
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

N e w F e a t u r e s G u i d e

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA. 2001

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademark s of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

The Visualizaton Toolkit
Copyright (c) 1993-1995 Ken Martin, Will Schroeder, Bill Lorensen.

This software is copyrighted by Ken Martin, Will Schroeder and Bill Lorensen. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files. This copyright specifically does not apply to the related textbook "The Visualiza-
tion Toolkit" ISBN 013199837-4 published by Prentice Hall which is covered by its own copyright.

The authors hereby grant permission to use, copy, and distribute this software and its documentation for any purpose, provided that
existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. Additionally, the authors
grant permission to modify this software and its documentation for any purpose, provided that such modifications are not distributed
without the explicit consent of the authors and that existing copyright notices are retained in all copies. Some of the algorithms imple-
mented by this software are patented, observe all applicable patent law.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS
SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PRO-
VIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents i

Table of Contents

Preface ix

What’s in this Manual ix

Conventions Used in this Manual x

Technical Support xi

Chapter 1: New Features Introduction 1
PV-WAVE 7.5 Major Enhancements 1

Chapter 2: New Commands 5

New PV-WAVE Commands 5

AFFINE Function 5

BLOB Function 6

BLOBCOUNT Function 7

BOUNDARY Function 8

CPROD Function 9

DERIVN Function 11

DICM_TAG_INFO Function 12

EUCLIDEAN Function 13

EXPAND Function 14

EXPON Function 16

EXTREMA Function 17

FACTOR Function 18

GCD Function 19

GREAT_INT Function 20

ii PV-WAVE 7.5 New Features Guide

GRIDN Function 21

HISTN Function 22

INDEX_AND Function 24

INDEX_OR Function 25

INTERPOLATE Function 26

INTRP Function 27

JACOBIAN Function 28

LCM Function 29

LISTARR Function 30

MINIMIZE Function 31

MOLEC Function 32

MOMENT Function 33

NEIGHBORS Function 34

NORMALS Function 35

PRIME Function 36

PRODUCT Function 37

RENDER24 Function 38

REPLV Function 39

RESAMP Function 40

SAME Function 41

SGN Function 42

SHIF Function 43

SLICE Function 44

SMALL_INT Function 45

SORTN Function 46

vtkADDATTRIBUTE Procedure 47

vtkAXES Procedure 48

Table of Contents iii

vtkCAMERA Procedure 50

vtkCLOSE Procedure 51

vtkCOLORBAR Procedure 52

vtkCOMMAND Procedure 53

vtkERASE Procedure 54

vtkGRID Procedure 55

vtkHEDGEHOG Procedure 56

vtkINIT Procedure 58

vtkLIGHT Procedure 59

vtkPLOTS Procedure 60

vtkPOLYDATA Procedure 62

vtkPOLYSHADE Procedure 63

vtkPPMREAD Function 65

vtkPPMWRITE Procedure 66

vtkRECTILINEARGRID Procedure 67

vtkRENDERWINDOW Procedure 68

vtkSCATTER Procedure 70

vtkSLICEVOL Procedure 72

vtkSTRUCTUREDGRID Procedure 74

vtkSTRUCTUREDPOINTS Procedure 75

vtkSURFACE Procedure 76

vtkSURFGEN Procedure 79

vtkTEXT Procedure 81

vtkTVRD Function 82

vtkUNSTRUCTUREDGRID Procedure 83

vtkWDELETE Procedure 84

vtkWINDOW Procedure 85

iv PV-WAVE 7.5 New Features Guide

vtkWRITEVRML Procedure 87

vtkWSET Procedure 88

WgOrbit Procedure 89

WIN32_PICK_PRINTER Function 90

New PV-WAVE:Database Connection Functions 91

DB_GET_BINARY Function 91

NULL_PROCESSOR Function 92

New PV-WAVE:IMSL Mathematics Commands 95

Chapter 4: Quadrature 95

INTFCN_QMC Function 95

Chapter 9: Special Functions 97

CUM_INTR Function 97

CUM_PRINC Function 99

DEPRECIATION_DB Function 100

DEPRECIATION_DDB Function 102

DEPRECIATION_SLN Function 104

DEPRECIATION_SYD Function 105

DEPRECIATION_VDB Function 106

DOLLAR_DECIMAL Function 108

DOLLAR_FRACTION Function 109

EFFECTIVE_RATE Function 110

FUTURE_VALUE Function 111

FUTURE_VAL_SCHD Function 113

INT_PAYMENT Function 114

INT_RATE_ANNUITY Function 115

INT_RATE_RETURN Function 117

INT_RATE_SCHD Function 118

Table of Contents v

MOD_INTERN_RATE Function 120

NET_PRES_VALUE Function 121

NOMINAL_RATE Function 123

NUM_PERIODS Function 124

PAYMENT Function 125

PRESENT_VALUE Function 127

PRES_VAL_SCHD Function 128

PRINC_PAYMENT Function 130

ACCR_INT_MAT Function 131

ACCR_INT_PER Function 133

BOND_EQV_YIELD Function 135

CONVEXITY Function 137

COUPON_DAYS Function 139

COUPON_NUM Function 141

SETTLEMENT_DB Function 143

COUPON_DNC Function 145

DEPREC_AMORDEGRC Function 147

DEPREC_AMORLINC Function 148

DISCOUNT_PR Function 150

DISCOUNT_RT Function 152

DISCOUNT_YLD Function 154

DURATION Function 157

INT_RATE_SEC Function 159

DURATION_MAC Function 161

COUPON_NCD Function 163

COUPON_PCD Function 165

PRICE_PERIODIC Function 167

vi PV-WAVE 7.5 New Features Guide

PRICE_MATURITY Function 170

MATURITY_REC Function 172

TBILL_PRICE Function 174

TBILL_YIELD Function 175

YEAR_FRACTION Function 176

YIELD_MATURITY Function 178

YIELD_PERIODIC Function 180

Chapter 10: Basic Statistics and Random Number Generation 183

FAURE_INIT Function 184

FAURE_NEXT_PT Function 187

New PV-WAVE:IMSL Statistics Commands 190

Chapter 8: Time Series and Forecasting 190

KALMAN Procedure 190

Chapter 11: Probability Distribution Functions and Inverses 200

BINOMIALPDF Function 200

Chapter 12: Random Number Generation 201

RANDOM_TABLE Procedure 201

RANDOM_NPP Function 205

RANDOM_ORDER Function 209

RAND_TABLE_2WAY Function 210

RAND_ORTH_MAT Function 212

RANDOM_SAMPLE Function 213

RAND_FROM_DATA Function 216

CONT_TABLE Procedure 218

RAND_GEN_CONT Function 219

DISCR_TABLE Function 221

RAND_GEN_DISCR Function 225

Table of Contents vii

RANDOM_ARMA Function 228

FAURE_INIT Function 232

FAURE_NEXT_PT Function 235

Chapter 3: Updates to Existing Functionality 239

Updated PV-WAVE Functions and Procedures 239

JOURNAL Procedure 239

NoBlock Keyword for PV-WAVE VDA Tool Procedures 240

YLabelCenter Keyword 240

!Version System Variable 240

Updated PV-WAVE:IMSL Statistics Functions 241

RANDOM Function 241

RANDOMOPT Function 241

Updated PV-WAVE:IMSL Mathematics Functions 242

RANDOM Function 242

RANDOMOPT Function 242

Index

viii PV-WAVE 7.5 New Features Guide

ix

PREFACE

Preface
This New Features Guide provides detailed information on major features added to
PV-WAVE, PV-WAVE:IMSL Mathematics, and PV-WAVE:IMSL Statistics since
version 7.0.

For additional information on this release, see the Release Notes, available in the
PV-WAVE installation directory or on our Web site: www.vni.com.

What’s in this Manual
Chapter 1: New Features Introduction — Provides an overview of the scope of
the PV-WAVE 7.5 release, along with user information for major enhancements.
added to PV-WAVE since version 7.0. The information in this chapter is integrated
into the PV-WAVE Programmer’s Guide, User’s Guide, and Application
Developer’s Guide, the PV-WAVE:IMSL Statistics Reference, and the
PV-WAVE:IMSL Mathematics Reference.

Chapter 2: New Commands — An alphabetical listing and detailed description of
the new PV-WAVE procedures and functions. The information in this chapter is
integrated into the PV-WAVE Reference, PV-WAVE Database Connection User’s
Guide, PV-WAVE:IMSL Statistics Reference, and PV-WAVE:IMSL Mathematics
Reference.

Chapter 3: Updates to Existing Functionality — Describes additions to
previously existing functionality. This chapter already is integrated into the PV-
WAVE Reference, PV-WAVE:IMSL Statistics Reference, and PV-WAVE:IMSL
Mathematics Reference.

Index — Contains page references for an alphabetical list of subjects described in
this guide.

x Preface PV-WAVE 7.0 New Features Guide

Conventions Used in this Manual
You will find the following conventions used throughout this manual:

• Code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• Code comments are shown in this typeface, immediately below the commands
they describe. For example:

PLOT, temp, s02, Title = ’Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

• Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed case type
(!Version). For better readability, all GUI development routines are shown in
mixed case (WwMainMenu).

• A $ at the end of a line of PV-WAVE code indicates that the current statement
is continued on the following line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
This means, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV-WAVE.

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error
; message is displayed if you enter a string this way.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two
; command lines.

• Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

 xi

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.5.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

xii Preface PV-WAVE 7.0 New Features Guide

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-5880

Taiwan +886-2-2727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

 xiii

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

xiv Preface PV-WAVE 7.0 New Features Guide

1

CHAPTER

1

New Features Introduction
This chapter provides an introduction to the scope of the PV-WAVE 7.5 release,
along with user information for major enhancements added to PV-WAVE since
version 7.0.

For information on specific new PV-WAVE functions and procedures, see New
PV-WAVE Commands in Chapter 2, New Commands.

For information on updates to existing PV-WAVE functionality, see Chapter 3,
Updates to Existing Functionality.

PV-WAVE 7.5 Major Enhancements

PV-WAVE VTK Integration
PV-WAVE has been updated to include the integration of the Visualization Toolkit
(VTK) to make all of its functionality available to PV-WAVE users. PV-WAVE
users can now create high quality, interactive graphics through the use of the
PV-WAVE link to the Visualization Toolkit (VTK). The Visualization Toolkit is an
Open Source toolkit for creating both simple and complex visualizations in 3D
using OpenGL for high-performance, accelerated graphics. The Visualization
Toolkit and PV-WAVE complement each other well. PV-WAVE excels at data
access, data manipulation, numerical algorithms, data filtering, user-interface
development, and many interactive 2D graphical tasks. The Visualization Toolkit
is a best-of-breed tool for creating complex 3D visualizations. Together they pro-
vide a simple and quick way to build tools for Visual Data Analysis. For detailed

2 Chapter 1: New Features Introduction PV-WAVE 7.5 New Features Guide

information on the new PV-WAVE-VTK functions, see New PV-WAVE Commands
in Chapter 2, New Commands.

PV-WAVE: IMSL Mathematics and Statistics

PV-WAVE: IMSL Mathematics and PV-WAVE: IMSL Statistics have been
updated to include a complete implementation of Visual Numeric’s IMSL C
Numerical Library 5.0.

New Functionality includes:

• A new time series routine useful in navigation, surveying, vehicle tracking (air-
craft, spacecraft, missiles), geology, oceanography, fluid dynamics, steel/
paper/power industries, and demographic estimation.

• 50 new functions in the area of finance and bonds.

• Routines to compute low discrepancy series of points using a generalized
Faure sequence.

• A new algorithm for efficient multi-dimensional quadrature.

• More than twenty new random number routines, including Generalized Feed-
back Shift Register (GFSR) generator support.

This integration represents a major enhancement to the WAVE Family. For detailed
descriptions of the new mathematics and statistics routines, see New
PV-WAVE:IMSL Mathematics Commands and New PV-WAVE:IMSL Statistics
Commands in Chapter 2, New Commands. For of the new mathematics and
statistics functionality, see the PV-WAVE:IMSL Statistics Reference and the
PV-WAVE:IMSL Mathematics Reference.

PV-WAVE: Database Connection
New functionality includes:

• DB_GET_BINARY Function - Returns binary large objects (BLOBS) from
a DBMS (database management system) server.

• NULL_PROCESSOR Function - Facilitates the use of the resulting output
from the Null_Info keyword for the DB_SQL function by extracting locations
of NULL values in the database query.

• Keyword - null_info_object to DB_SQL function, which provides informa-
tion on the location of NULL data in the result from a database query. For more
information on keyword null_info_object, see NULL_PROCESSOR Function
on page 92.

PV-WAVE 7.5 Major Enhancements 3

For more detailed information on the new database connection functions, see New
PV-WAVE:Database Connection Functions on page 91.

PV-WAVE: DICOM Reader

PV-WAVE users can now read and write DICOM images with the implementation
of IMAGE_READ and IMAGE_WRITE functions. For more details on
IMAGE_READ and IMAGE_WRITE, see the PV-WAVE Reference.

New Functionality includes:

DICM_TAG_INFO Function — extracts the tag information from an image asso-
ciative array that contains a DICOM image. For more details on
DICM_TAG_INFO, see New PV-WAVE Commands on page 5 in Chapter 2, New
Commands.

4 Chapter 1: New Features Introduction PV-WAVE 7.5 New Features Guide

5

CHAPTER

2

New Commands
This chapter lists and describes new functions and procedures added to:

• PV-WAVE (page 5)

• PV-WAVE:Database Connection (page 91)

• PV-WAVE:IMSL Mathematics (see page 95)

• PV-WAVE:IMSL Statistics (page 190)

New PV-WAVE Commands
This section describes the new functions and procedures that have been added to
PV-WAVE 7.5.

AFFINE Function
Standard Library function that applies an affine transformation to an array.

Usage

result = AFFINE(a, b, [c])

Input Parameters

a — An n-dimensional array.

6 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

b — An invertible (n, n) array.

c — An n-element vector (optional).

Returned Value

result — An array representing a (and of the same dimensions as a) under the
coordinate transformation y = b#x + c, where y and x are coordinates for the
result and for a, respectively, which differ from array index coordinates by a simple
translation to the array centroid.

Keywords

None.

Example

See wave/lib/user/examples/affine_ex.

See Also

ROT, ROTATE, ROT_INT

BLOB Function
Standard Library function that isolates a homogeneous region in an array.

Usage

result = BLOB(a, i, b)

Input Parameters

a — An array of n dimensions.

i — A vector of n integers giving a seed element for the region.

b — A two-element vector giving bounds for values in the region.

BLOBCOUNT Function 7

Returned Value

result — An (m,n) array of m n-dimensional indices into a. result defines the
region containing i whose values lie in the range [b(0),b(1)]. If no such region
exists then result is returned as -1.

Keywords

k — A positive integer (less than or equal to n) controlling connectivity: two cells
are connected if they share a common boundary point, and if their centroids are
within the square root of k of each other. k = 1 by default, which implies connected
cells share a common face.

Example

See wave/lib/user/examples/blob_grow.pro

See Also

BLOBCOUNT, BOUNDARY, NEIGHBORS

BLOBCOUNT Function
Standard Library function that counts homogeneous regions in an array.

Usage

result = BLOBCOUNT(a, b)

Input Parameters

a — An array of n dimensions.

b — A two-element vector of bounds for values in a region.

Returned Value

result — A list in which each element defines a distinct region whose values lie in
the range [b(0),b(1)]. result(j) is a (m(j),n) array of m(j) n-dimensional indices into
a. If no such regions exist, then result is returned as -1.

8 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Keywords

k — A positive integer (less than or equal to n) controlling connectivity: two cells
are connected if they share a common boundary point, and if their centroids are
within the square root of k of each other. k = 1 by default, which implies that
connected cells share a common face.

Example 1
a = (image_read(!data_dir+’vni_small.tif’))(’pixels’)

a = bytscl(resamp(a,500,500)) & tv, a

r = blobcount(a, [255,255])

for i = 0, n_elements(r)-1 do a(index_conv(a,r(i))) = 50 & tv, a

Example 2

See wave/lib/user/examples/blobcount_ex.pro

See Also

BLOB, BOUNDARY, NEIGHBORS

BOUNDARY Function
Standard Library function that computes the boundary of a region in an array.

Usage

result = BOUNDARY(a,r)

Input Parameters

a — An array of n dimensions.

r — A vector of indices defining the region of a.

Returned Value

result — A vector of indices defining the boundary of r.

CPROD Function 9

Keywords

k — A positive integer (less than or equal to n) defining connectivity. A boundary
element of r is an element of r with neighbors not in r; two array cells are neighbors
if they share a common boundary point and their centroids are within the square
root of k of each other. k = 1 by default, which implies neighbors share a common
face.

Examples
a = indgen(5, 4) & pm, a

print, fix(boundary(a,[1,2,3,6,7,8,12,13]))

print, fix(boundary(a,[1,2,3,6,7,8,12,13],k=2))

a = bytscl(dist(500)) & r = where(150 le a and a le 200)

a(boundary(a,r)) = 0 & tv, a

See Also

BLOB, BLOBCOUNT, NEIGHBORS

CPROD Function
Standard Library function that returns the Cartesian product of some arrays.

Usage

result = CPROD(a)

Input Parameters

a — A list of n arrays.

Returned Value

result — An (m,n) array where result(i,*) is an element of the Cartesian product of
the n arrays in a, and where result(*,j) contains only elements from a(j); result is
ordered so that result(*,j) cycles through the elements of a(j) in order, and does so
faster than result(*,j+1) cycles through the elements of a(j+1).

10 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Keywords

None.

Example
pm, cprod(list([0,1], [0,1,2], [0,1,2,3]))

CURVATURES Function
Standard Library function that computes curvatures on a parametrically defined
surface.

Usage

c = curvatures (s)

Input Parameters

s — A 3-element list of 2-dimensional arrays of dimensions d.

Returned Value

c — A 2-element list of 2-dimensional arrays of dimensions d, where c(0) defines
the distribution of minimum curvature and c(1) defines the distribution of maxi-
mum curvature.

Keyword

x - A 2-element list of vectors defining the independent variables. By default,
x(i) = findgen(d(i))

Example

See wave/lib/user/examples/curvatures_ex.pro.

See Also

EUCLIDEAN, JACOBIAN, NORMALS

DERIVN Function 11

DERIVN Function
Standard Library function that differentiates a function represented by an array.

Usage

result = DERIVN(a, n)

Input Parameters

a — An array of values of the dependent variable.

n — An integer (≥ 0) designating which dimension to differentiate.

Returned Value

result — An array of the same dimensions as a, representing the derivative with
respect to the nth independent variable.

Keywords

x — A vector defining the independent variable of differentiation. x defaults to the
indices into dimension n of a.

Examples
pm, derivn([0,2,1,0,1], 0)

pm, derivn([[0,2,1,0,1],[2,1,0,2,0],[1,0,2,1,2]], 0)

pm, derivn([[0,2,1,0,1],[2,1,0,2,0],[1,0,2,1,2]], 1)

See Also

DERIV

12 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

DICM_TAG_INFO Function
Extracts Digital Imaging and Communications in Medicine (DICOM) tags infor-
mation from an image associative array.

Usage

result = DICM_TAG_INFO (filename, image)

Input Parameters

filename  On input, a string containing the name of the file which contains the
descriptions for the DICOM tags.

image An associative array in image format.

Returned Value

result  An associative array containing DICOM tags information.

Discussion

The DICM_TAG_INFO function extracts the tag information from an image
associative array that contains a DICOM image. The tag information is returned
as an associative array. The following table describes each key of the associative
array:

The DICM_TAG_INFO function needs a file containing the tag description as
input. This file contains a tag followed by a description for this tag. The tags in
this file must be in ascending order. For example:

Array Key Name Variable Type Description

tag STRING A 1-dimensional array containing
the DICOM tags

description STRING A 1-dimensional array containing
the DICOM tag descriptions

value STRING A 1-dimensional array containing
the DICOMtag values

EUCLIDEAN Function 13

(0002,0000) Group Length UL 1

(0002,0001) File Meta Information Version OB 1

Example

This example uses IMAGE_READ to read a DICOM image file. Then it extracts
the DICOM tags and displays the information of the result variable.
image = IMAGE_READ(’test.dicm’, File_type=’dicm’)

tags = DICM_TAG_INFO(’dict.txt’,image)

INFO, tags, /Full

TAGS AS. ARR = Associative Array(3)

 tag STRING = Array(36)

 description STRING = Array(36)

 value STRING = Array(36)

See Also

IMAGE_READ, IMAGE_WRITE

EUCLIDEAN Function
Standard Library function that transforms the Euclidean metric for a Jacobian j =
Jacobian (f)

Usage

e = euclidean (j)

Input Parameters

j — A Jacobian defined by a n-element list of m-element lists of m-dimensional
arrays of dimensions d.

Returned Value

e — The Euclidean metric under a transformation with Jacobian j: an m-element
list of m-element lists of m-dimensional arrays. (e(p))(q) is the m-dimensional array
(of dimensions d) that represents the (p, q) component of the metric.

14 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Keywords

None.

Example

See wave/lib/user/examples/euclidean_ex.pro.

See Also

CURVATURES, JACOBIAN, NORMALS

EXPAND Function
Standard Library function that expands an array into higher dimensions.

Usage

result = EXPAND(a, d, i)

Input Parameters

a — An array of n dimensions.

d— A vector specifying the dimensions for the new array.

i — A monotonically increasing vector of n indices into d specifying which
of the new dimensions correspond to old dimensions:
d(i) must equal SIZE(a, /Dimensions).

Returned Value

result — An array of dimensions d, the expansion of the input array.

Keywords

None.

Examples
pm, EXPAND([0,1], [2,3], [0])

EXPAND Function 15

pm, EXPAND([0,1], [3,2], [1])

pm, EXPAND([[0,1,2],[3,4,5]], [5,3,2], [1,2])

pm, EXPAND([[0,1,2],[3,4,5]], [3,5,2], [0,2])

pm, EXPAND([[0,1,2],[3,4,5]], [3,2,5], [0,1])

See Also

REBIN, REPLV

16 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

EXPON Function
Standard Library function that performs general exponentiation.

Usage

result = EXPON(a, b)

Input Parameters

a — An array (scalar) of any numerical data type.

b — An array (scalar) of any numerical data type.

Returned Value

result — A double complex array (scalar) containing the values ab.

Keywords

None.

Examples
pm, EXPON([complex(0,1),-1], [complex(2,3),0.5])

EXTREMA Function 17

EXTREMA Function
Standard Library function that finds the local extrema in an array.

Usage

result = EXTREMA(array)

Input Parameters

array — The array for which the local extrema will be found.

Returned Value

result — A list containing two vectors of indices into array. result(0) contains the
local minima and result(1) contains the local maxima

Keywords

None.

Examples
e = EXTREMA([0,1,2,2,2,3,2,1,3]) & pm, e(0), ’ ’ & pm, e(1)

a = bytscl(randomu(s,5,5), top=9) & pm, a

e = EXTREMA(a) & pm, e(0), ’ ’ & pm, e(1)

See Also

MAX, MIN

18 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

FACTOR Function
Standard Library function that returns the prime factorization of an integer greater
than 1.

Usage

result = FACTOR(i)

Input Parameters

i — An integer greater than 1.

Returned Value

result — Sorted vector of longs containing the prime factorization of i.

Keywords

a — If set, result contains all factors instead of just prime factors.

Examples
pm, FACTOR(12,/a)

pm, FACTOR(12)

See Also

GCD, LCM, PRIME

GCD Function 19

GCD Function
Standard Library function that returns the greatest common divisor of some
integers greater than 0.

Usage

result = GCD(i)

Input Parameters

i — An array of integers greater than 0.

Returned Value

result — An integer: the greatest common divisor of the integers i.

Keywords

None.

Examples
pm, GCD([12,20,32])

See Also

FACTOR, LCM, PRIME

20 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

GREAT_INT Function
Greatest Integer Function. Standard Library function that returns the greatest
integer less than or equal to the passed value. Also known as the Floor Function.

Usage

result = GREAT_INT(values)

Input Parameters

values — An array (scalar).

Returned Value

result — A long array (scalar) of the same dimensions as values: result(i) is the
greatest integer less than or equal to values(i).

Keywords

None.

Examples
PM, GREAT_INT([-0.5,0,0.5])

See Also

SMALL_INT

GRIDN Function 21

GRIDN Function
Standard Library function that grids n dimensional data.

Usage

result = GRIDN(d, i)

Input Parameters

d — An (m,n+1) array of m datapoints in n independent variables and one
dependent variable; d(*,n) is the dependent variable.

i — A vector of n integers specifying the dimensions of the grid.

Returned Value

result — An n dimensional array of values of the dependent variable on a regular
grid over the independent variables.

Keywords

r — A scalar specifying the order of the weighting function. The dependent
variable at a grid point is computed as a weighted average of the variable over all
neighborhood datapoints. The weighting function is 1/er where e is the Euclidean
distance between the grid point and the datapoint. r defaults to 2

t — A scalar between 0 and 1 specifying neighborhood size. t=1 gives a maximal
neighborhood which includes all datapoints, while lower t values yield smaller
neighborhoods. t defaults to 1

b — A 2 x n array fixing the boundary of the grid. b(0,*) is the minimum corner
and b(1,*) is the maximum corner. The default extent of the grid is the same as that
of the data.

f — The name of a user-supplied procedure describing voids in the independent
variable space (datapoints and gridpoints within these regions are ignored in
computation). Input to f is a (p,n) array of p points in the independent variable
space. f outputs two items where the first item is a vector of indices indicating
which of the p input points are within bounds, and where the second item is a scalar
that will appear as a place holder for the dependent variable at out-of-bounds
gridpoints.

c — (output) A list of n vectors defining the grid coordinates.

22 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Examples

See wave/lib/user/examples/gridnex1.pro

wave/lib/user/examples/gridnex2.pro

See Also

FAST_GRID2, FAST_GRID3, FAST_GRID4, INTERPOLATE

HISTN Function
Standard Library function that computes an n dimensional histogram.

Usage

result = HISTN(d [, axes])

Input Parameters

d — An (m,n) array of m data points in n-space.

Returned Value

result — An n dimensional array of size binnum.

axes = (optional - use with /scale) an (n, binnum) array containing properly scaled
axes with which to plot the results. For example:

CONTOUR, result, transpose(axes(0,*)), transpose(axes(1,*))

Keywords

Binnum — The number of bins for the histogram.

Binsize — The size of bins for the histogram. The default = 1.

NOTE Only 1 of binnum or binsize can be set.

/Scale — If set, the result is scaled so to have unit volume under the curve/surface
when plotted against x.i/stdev(x.i)

/Compatible — If set, the result will align with HISTOGRAM. The default
behavior of HISTN is “binnum-central” logic, while the default behavior of

HISTN Function 23

HISTOGRAM is “binsize-central” logic. Setting /compatible will force HISTN to
be “binsize-central.”

NOTE When using /compatible with 2D arrays and setting binsize manually, you
may see poor results if the binsize is not appropriate for all variables. In this case,
you should either set binnum or not use /compatible.

Examples

Interpreting an n-dimensional histogram, a 2D example.

Consider two sets of 10 random numbers. If one computes 1D histograms with 3
bins, you may find these results (number of items in each bin):

x = RANDOMN(s,10) & y = RANDOMN(s,10)

xy = FLTARR(10,2) & xy(*,0) = x & xy(*,1) = y

PRINT, HISTN(x, binnum=3)

 4 5 1

PRINT, HISTN(y, binnum=3)

 3 4 4

The result for the 2D histogram may give:

PRINT, HISTN(xy, binnum=3)

 1 1 1

 2 2 0

 1 2 0

Summing this result vertically yields the 1D result for x. Summing this result
horizontally yields the 1D result for y. To plot a probability distribution function
with unit volume under the surface, one would call HISTN with the /Scaled
keyword and plot the results against x/std(x) and y/STD(y). Using the axes output
parameter with HISTN returns these vectors in a 2D array.

h2 = HISTN(xy, axes, binnum=3, /scaled)

shade_surf, h2, axes(0,*), axes(1,*)

See Also

HISTOGRAM

24 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

INDEX_AND Function
Standard Library function that computes the logical AND for two vectors of
positive integers.

Usage

result = INDEX_AND(array1, array2)

Input Parameters

array1 — A vector of positive integers.

array2 — A vector of positive integers.

Returned Value

result — A vector containing all elements common to both input arrays. (result is
not unique’d.)

Keywords

None.

Examples
PM INDEX_AND([2,0,3], [1,2,0,2])

See Also

INDEX_OR, WHEREIN

INDEX_OR Function 25

INDEX_OR Function
Standard Library function that computes the logical OR for two vectors of positive
integers.

Usage

result = INDEX_OR(array1, array2)

Input Parameters

array1 — A vector of positive integers.

array2 — A vector of positive integers.

Returned Value

result — A vector consisting of all elements contained in either of the input arrays
(result is unique’d).

Keywords

None.

Examples
PM, INDEX_OR([2,0,3], [1,2,0,2])

See Also

INDEX_AND, WHEREIN

26 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

INTERPOLATE Function
Standard Library function that interpolates scattered data at scattered locations.

Usage

result = INTERPOLATE(d, x)

Input Parameters

d — An (m, n+1) array of m datapoints in n independent variables and one
dependent variable; d(*,n) is the dependent variable.

x — A (p,n) array specifying p interpolation points.

Returned Value

result — A 1d array of values of the dependent variable at points x.

Keywords

r — A scalar specifying the order of the weighting function. The dependent
variable at an interpolation point is computed as a weighted average of the variable
over all datapoints. The weighting function is 1/er where e is the Euclidean distance
between the interpolation point and the datapoint. r defaults to 2

Examples
x = findgen(51) / 50 & plot, x, INTERPOLATE([[0,1],[2,3]],x)

See Also

GRIDN

INTRP Function 27

INTRP Function
Standard Library function that interpolates an array along one of its dimensions.

Usage

result = INTRP(a, n, x)

Input Parameters

a — An array.

n — An integer (≥0) designating the dimension to interpolate.

x — A one-dimensional array giving the coordinates at which to interpolate.

Returned Value

result — The array of interpolated slices perpendicular to dimension n.

Keywords

z — a strictly increasing 1d array of coordinates for dimension n (defaults to the
indicies into this dimension).

Examples

See wave/lib/user/examples/intrp_ex.

See Also

REBIN, RESAMP

28 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

JACOBIAN Function
Standard Library function that computes the Jacobian of a function represented by
n m-dimensional arrays

Usage

j = jacobian (f)

Input Parameters

f — an n-element list of m-dimensional arrays all of the same dimensions d; f rep-
resents a n-valued function of m variables.

Returned Value

j — an n-element list of m-element lists of m-dimensional arrays: (j(p))(q) is the m-
dimensional array (of dimensions d) which represents the derivitive of the pth
dependent variable with respect to the qth independent variable.

Keywords

x — m-element list of vectors defining the independent variables; by default,
x(i) = findgen(d(i)).

Example
f = list(randomu(s,10,20), randomu(s,10,20), randomu(s,10,20))

j = jacobian(f)

for p=0,2 do for q=0,1 do pm, same((j(p))(q), derivn(f(p),q))

See Also

CURVATURES, DERIVN, EUCLIDEAN, NORMALS

LCM Function 29

LCM Function
Standard Library function that returns the least common multiple of some integers
greater than 1.

Usage

result = LCM(i)

Input Parameters

i — An array of integers greater than 1.

Returned Value

result — An integer, the least common multiple of the integers i.

Keywords

None.

Examples
pm, LCM([3,2,4])

See Also

FACTOR, GCD, PRIME

30 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

LISTARR Function
Returns a list.

Usage

result = LISTARR(number_elements,[value])

Input Parameters
number_elements — The number of elements the created list should contain. Must
be a scalar expression.

value — (optional) The value with which to initialize each element of the list. May
be any data type.

Returned Value
result — A list with the requested number of elements.

Keywords
None.

Discussion
Values in the list are initialized to 0L unless value is specified.

Examples
INFO, LISTARR(2, 10), /Full

MINIMIZE Function 31

MINIMIZE Function
Standard Library function that minimizes a real valued function of n real variables.

Usage

x = MINIMIZE(f, l, u, g, i, y)

Input Parameters

f — A string specifying a user supplied function to be minimized. Input is a (m,n)
array of m points in n-space (m variable); output is a (m,p+1) array b, where p is
the number of constraints, b(*,0) contains the objective function values at each of
the m input points, and b(*,j) contains the corresponding values of the j’th
constraint. All constraints must be of the form c(x) ≤ 0.

l — n-element vector of lower bounds for the independent variables

u — n-element vector of upper bounds for the independent variables

g — n-element vector giving an initial guess for the solution

i — An integer limit on the number of iterations

Returned Value

x — The n-element solution vector

y — (optional) A (p+1)-element vector containing the objective function value at x
followed by the constraint values at x.

Keywords

d — A string specifying a user-supplied gradient function. Input is the n-element
vector at which to calculate the gradient(s). Output is a (n,p+1) array that contains
the objective function gradient followed by the constraint gradients.

s — An (n,2) array where s(*,0) is the maximum allowable step and s(*,1) is the
minimum allowable step. The default is [[(u-l)/100], [(u-l)/1000]].

Examples

See wave/lib/user/examples/minimize_ex*.pro.

32 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

MOLEC Function
Standard Library function that creates an image of a ball and stick molecular
model.

Usage

result = MOLEC(filename)

Input Parameters

filename — The name of an ASCII file describing the molecular model. Line 1 in
the file consists of a single integer designating the number (m) of atoms. Each of
the lines 2-(m+1) contains 7 floats describing an atom in terms of centroid,
normalized RGB color components, and diameter. Line m+2 consists of a single
integer equal to the number (n) of bonds; each of the lines (m+3)-(m+n+2)
contains 6 floats describing a bond as endpoint1 followed by endpoint2.

Returned Value

result — A 24-bit image of the molecular model.

Keywords

h — A scale factor for adjusting atom size. The default is h=1.0.

s — A 2-element vector specifying image size. The default is s=[500,500].

v — A 3-by-4 double-precision floating-point array used to override the
autogeneration of the view to that specified as: [viewpoint, top_left_viewplane,
bottom_left_viewplane, bottom_right_viewplane]. v and !P.T control the 3d view.

k — (output) A 3-by-4 double-precision floating-point array used to return the
automatically calculated view as: [viewpoint, top_left_viewplane,
bottom_left_viewplane, bottom_right_viewplane].

Examples
T3D, /Reset & TV, MOLEC(!data_dir+’molec.dat’,h=0.6), true=3

MOMENT Function 33

MOMENT Function
Standard Library function that computes moments of an array.

Usage

result = MOMENT(a, i)

Input Parameters

a — An array of n dimensions.

i — A vector of n non-negative real numbers defining moment order.

Returned Value

result — A scalar double equal to:

Keywords

None.

Examples
a = BYTARR(600, 500)

x = INDEX_CONV(a, LINDGEN(N_ELEMENTS(a)))

a(WHERE((x(*,0)-200)^2+(x(*,1)-300)^2 LT 100^2)) = 255

TV, a

CENTROID = [MOMENT(a,[1,0]),MOMENT(a,[0,1])] / MOMENT(a,[0,0])

PLOTS, CENTROID, /DEVICE, COLOR=0, PSYM=2

34 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

NEIGHBORS Function
Standard Library function that finds the neighbors of specified array elements.

Usage

result = NEIGHBORS(a, i)

Input Parameters

a — An array of n dimensions.

i — An m-element vector of m one-dimensional indices into a.

Returned Value

result — An (m,*) array of one-dimensional indices into a: result(j,*) contains i(j)
and its neighbors.

Keywords

k — A positive integer (less than or equal to n) defining connectivity. Two array
cells are neighbors if they share a common boundary point, and if their centroids
are within √k of each other. The default is k = 1, which implies neighbors share a
common face.

Examples
a = INDGEN(8, 9) & pm, a

pm, fix(NEIGHBORS(a,[0,4,26,47,71]))

pm, fix(NEIGHBORS(a,[0,4,26,47,71],k=2))

NORMALS Function 35

NORMALS Function
Standard Library function that computes unit normals on a parametrically defined
surface.

Usage

n = normals (j)

Input Parameters

j — The Jacobian (computed by the JACOBIAN function) on the surface.

Returned Value

n — A 3-element list of 2-dimensional arrays of the same size as those in j: n(i) is
the array describing the distribution of the ith component of the unit normal.

Keywords

None.

Example

See wave/lib/user/examples/normals_ex.pro.

See Also

CURVATURES, EUCLIDEAN, JACOBIAN

36 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

PRIME Function
Standard Library function that returns all positive primes less than or equal to a sca-
lar input.

Usage

result = PRIME(value)

Input Parameters

value — The scalar input.

Returned Value

result — A vector containing all positive primes less than or equal to value.

Keywords

None.

Examples
PRINT, PRIME(10)

See Also

FACTOR, GCD, LCM

PRODUCT Function 37

PRODUCT Function
Returns the product of all elements in an array.

Usage

result = PRODUCT(array)

Input Parameters

array — An array.

Returned Value

result — A scalar value equal to the product of all the elements in array.

Keywords

None.

Discussion

If array is of type single- or double-precision floating point, or single- or
double-precision complex, the result will be of the same type. If array is of any
other type, PRODUCT returns a single-precision floating-point result.

Examples
PM, PRODUCT([2,3,4])

38 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

RENDER24 Function
Standard Library function that generates a ray-traced rendered 24-bit image of m
objects.

Usage

result = RENDER24(b)

Input Parameters

b — A m-element list containing the m objects to render; objects are created using
the CONE, CYLINDER, MESH, or SPHERE functions. The objects must be
created with default material properties since these properties are controlled with
keywords (see below).

Returned Value

result — (n,p,3) byte array containing a 24-bit image of the objects.

Keywords

c — (m,3) array of normalized RGB color components for the objects; by default,
c(*,*) = 1.0

k — (m,3,3) array of normalized shade components for the objects: k(i,j,*) contains
the ambient, reflective, and transmissive components for c(i,j). The sum of the
three components must not exceed one. The default is k(i,j,*) = [0.0,
1.0, 0.0]

v — (3,4) array used to override the view automaticaly generated from !p.t. If
defined, v works like RENDER’s View keyword; if undefined. v works like
RENDER’s Info keyword.

g — (4,q) array giving position and intensity for q light sources; the sum of the
source intensities g(3,*) must equal one. The default is a single light source at the
viewer's eye

s — A 2-element vector specifying image size. The default is [256,256]

Examples
b = LIST(SPHERE(), CYLINDER()) & b(1).transform(3,2) = 2

REPLV Function 39

c = [[0,0], [1,0], [0,1]] & T3D, /reset, ROTATE=[0,50,0]

TV, RENDER24(b,c=c,s=[500,500]), true=3

See Also

POLYSHADE, RENDER

REPLV Function
Standard Library function that replicates a vector into an array.

Usage

result = REPLV(vector, dim_vector, dim)

Input Parameters

vector — The vector to be replicated.

dim_vector — A vector specifying the dimensions of the output array.

dim — An integer (≥0) designating the dimension to replicate.

Returned Value

result — An array of dimensions dim_vector.

Keywords

None.

Examples
PM, REPLV([0,1], [2,4], 0)

PM, REPLV([0,1], [4,2], 1)

PM, REPLV([0,1], [4,2], 0)

See Also

EXPAND, REBIN, REPLICATE

40 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

RESAMP Function
Standard Library function that resamples an array to new dimensions.

Usage

result = RESAMP(array, dim1, ..., dimn)

Input Parameters

array — An array of n dimensions.

dimi — Integers (>0) specifying the new dimensions.

Returned Value

result — The resampled version of array.

Keywords

Interp — If set, n-linear interpolation is used instead of the default
nearest-neighbor interpolation.

Examples
PM, RESAMP([0,1,2,3], 3)

PM, RESAMP([0,1,2,3], 3, /i)

PM, RESAMP([0,1,2,3], 6, /i)

PM, RESAMP([[0,1,2,3],[4,5,6,7]], 6, 3, /i)

See Also

INTRP, REBIN

SAME Function 41

SAME Function
Standard Library function that tests if two variables are the same.

Usage

result = SAME(x, y)

Input Parameters

x — A variable.

y — A variable.

Returned Value

result — 1 if the two variables are the same (within keyword settings), 0 if not.

NOTE For Named Structures, the name is not tested, so {a,x:1} is same as {b,x:1}.

Keywords

NoType — If set, the types of x and y are ignored. (FINDGEN(5) is same as
INDGEN(5).)

NoDim — If set, the dimensions of the arrays are ignored. ([1,2,3,4] is same as
[[1,2],[3,4]] - same as SAME(a(*),b(*).)

NoVal — If set, the values in the arrays are ignored. ([1,2,3] is same as [3,4,5].)

Examples

To test for exact match:

result = SAME(a, b)

To test for compatible sizes:

result = SAME(a, b, /NoType, /NoVal)

(Replaces multiple SIZE calls.)

See Also

SIZE

42 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

SGN Function
Standard Library function that returns the sign of passed values.

Usage

result = SGN(x)

Input Parameters

x — A scalar or array.

Returned Value

result — An integer array of the same size of x where each element is:

1 where x > 0

-1 where x < 0

0 where x = 0

Keywords

None.

Examples
PM, SGN([-0.5,0,0.5])

SHIF Function 43

SHIF Function
Standard Library function that shifts an array along one of its dimensions.

Usage

result = SHIF(array, dimension, shift_amount)

Input Parameters

array — An array.

dimension — An integer (≥0) designating the shift dimension.

shift_amount — An integer specifying the shift amount.

Returned Value

result — An array of the same dimensions as array. result is obtained from the
input array by a shift of shift_amount elements along dimension dimension. The
shift is not cyclic; elements behind the shift are unaltered.

Keywords

y — If set, the shift is cyclic.

Examples
PM, SHIF([0,1,2,3,4,5], 0, 1)

PM, SHIF([0,1,2,3,4,5], 0, -2)

PM, SHIF([0,1,2,3,4,5], 0, -2, /y)

PM, SHIF([[0,1,2],[3,4,5],[6,7,8]], 0, 1)

PM, SHIF([[0,1,2],[3,4,5],[6,7,8]], 1, 1)

See Also

SHIFT

44 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

SLICE Function
Standard Library function that subsets an array along one of its dimensions.

Usage

result = SLICE(array, dimension, indices)

Input Parameters

array — An array.

dimension — An integer (≥0) designating the dimension to subset.

indices — A vector of indices into dimension dimension.

Returned Value

result — An array of slices perpendicular to dimension dimension.

Keywords

None.

Examples
a = INDGEN(6, 5, 2) & pm, a, [’’,’’], SLICE(a, 0, [1,3,5])

SMALL_INT Function 45

SMALL_INT Function
Smallest Integer Function. Standard Library function that returns the smallest
integer greater than or equal to the passed value. Also known as Ceiling Function.

Usage

result = SMALL_INT(x)

Input Parameters

x — An array (scalar).

Returned Value

result — A long array (scalar) of the same dimensions as x: result(i) is the smallest
integer greater than or equal to x(i).

Keywords

None.

Examples
PM, SMALL_INT([-0.5,0,0.5])

x=[-2.1,-1.9,0,1.9,2.1]

PRINT, SMALL_INT(x)

; -2 -1 0 2 3

See Also

FIX, GREAT_INT, NINT

46 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

SORTN Function
Standard Library function that sorts an array of n-tuples.

Usage

result = SORTN(a)

Input Parameters

a — An (m,n) array of m n-tuples.

Returned Value

result — An array of indices, such that a(result,*) is the sorted version of a.

Keywords

None.

Examples
a = BYTSCL(RANDOMU(seed,9,2), Top=5)

PM, a

b = SORTN(a)

PM, b

PM, a(b,*)

See Also

SORT, UNIQUE, UNIQN

vtkADDATTRIBUTE Procedure 47

vtkADDATTRIBUTE Procedure
Collects point attributes for VTK datasets.

Usage

vtkADDATTRIBUTE, attributes

Input Parameters

attributes — A list variable containing all of the attributes for a dataset. Passing an
undefined variable on the first call to creates the initial list. Using the variable on
subsequent calls will add elements to the list. You should never have to create or
modify the contents of this variable manually.

Keywords

Name — A scalar string specifying a name for this attribute. The default name is
the attribute name in lower case.

Lookup_table_name — Only used with scalar attributes. A scalar string specifying
the name of the lookup table to be associated with a scalar attribute. The default
table is “default.”

One and only one of the following keywords can be used to add an attribute of the
selected type:

Scalars — A vector of floating point numbers containing scalar values for each
entry in points.

Lookup_table — An array of floating point numbers of size (3, m) containing nor-
malized RGB values.

Vectors — An array of floating point numbers of size (3, n), where n equals the
number of Points, containing the x, y, and z components for each vector.

Normals — An array of floating point numbers of size (3, n), where n equals the
number of points, containing the x, y, and z components for each normal, where the
x, y, and z values are normalized to a unit length of 1.

Color_scalars — An array of floating point numbers of size (m, n), where n equals
the number of Points and m is the number of values per color scalar. Values are
between 0.0 and 1.0.

48 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Texture_coordinates — An array of floating point numbers of size (m, n), where m
is 1, 2, or 3 and n equals the number of points.

Tensors — An array of floating point numbers of size (3, 3, n), where n equals the
number of points.

Discussion

This procedure allows a set of attributes to be collected and passed to one of the
dataset creation routines: vtkPOLYDATA, vtkSTRUCTUREDPOINTS,
vtkSTRUCTUREDGRID, vtkRECTILINIARGRID, or
vtkUNSTRUCTUREDGRID. Datasets can have one or more attributes associated
with their points, and even more than one attribute of the same type, with the Name
assigned to the attribute used to distinguish them. For Scalars, Normals,
Color_scalars, Texture_coordinates, and Tensors, the number of supplied
attributes must equal the number of points in the dataset to which they will be
assigned.

vtkAXES Procedure
Creates a set of axes.

Usage

vtkAXES

Input Parameters

None.

Keywords

Charsize — A floating point scalar or three-element array, the size of the text for
tickmark labels and axes labels. (Default: 0.4*Lengths)

Format — A FORTRAN style format string to use for the tick mark labels.
(Default: ’(g10.2)’)

Name — Specify a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

vtkAXES Procedure 49

Position — An array of three floating point numbers in data coordinates describing
the origin for the axis. (Default: [0, 0, 0])

Lengths — An array of three floating point numbers describing the length of the x,
y, and z axes, respectively, specified in data coordinates. (Default: [1, 1, 1])

Labels — If non-zero, any tick marks drawn are labeled with default values.

LOD — If nonzero, the tickmarks are created as level-of-detail actors to aid in
keeping a high frame-rate during frequent render requests due to user mouse inter-
action. If set to a value greater than 1, the number of points to use in the random
cloud.

Sigfig — An integer, the number of significant figures to use for the tick mark
labels. (Default: 2).

TextColor — The color to use for text used for [XYZ]Title. See vtkWINDOW
(page 85) for possible ways to specify the color. (Default: ’white’)

Tickscale — A float, a scaling value passed to vtkSCATTER for the tick mark
glyphs. (Default: 0.33)

Ticksymbol — An integer, passed to vtkSCATTER to set the glyph to use for the
tick marks. (Default: 0, a sphere)

Other keywords are listed below. For a description of each keyword, see Chapter
3, Graphics and Plotting Keywords in the PV-WAVE Reference.

Discussion

This procedure creates three axes displayed as lines in the x, y, and z direction, with
an optional label at the top of each axis.

Example
vtkAxes, lengths = [1,1.5,2]

See Also

AXIS

[XYZ]Tickname [XYZ]Ticks [XYZ]Tickv

[XYZ]Title

50 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkCAMERA Procedure
Changes the camera’s parameters.

Usage

vtkCAMERA

Input Parameters

None.

Keywords

Name — Specify a name to be used to create this object. If an undefined variable
is used or no name is specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Position — An array of three floating point numbers describing the x, y, and z posi-
tion for the camera in data coordinates.

FocalPoint — An array of three floating point numbers describing the x, y, and z
position for the camera’s focal point in data coordinates.

ClippingRange — An array of two floating point numbers describing the distance
from the camera to the front and back clipping planes (in data coordinates).

ViewUp — An array of three floating point numbers describing a vector that repre-
sents the up direction for the view.

Distance — A floating point number describing the distance from the focal point
to the camera (which will modify the FocalPoint value) in data coordinates.

ViewAngle — A floating point number that sets the view angle of the camera in
degrees.

Azimuth — A scalar value describing the angle in degrees to rotate the camera
about the view up vector centered at the focal point. This moves the camera from
side to side.

Elevation — A scalar value describing the angle in degrees to rotate the camera
about the cross product of the direction of projection and the view up vector cen-
tered on the focal point. This moves the camera up and down.

vtkCLOSE Procedure 51

Roll — A scalar value describing the angle in degrees to rotate the camera about
the direction of projection. This rolls the camera about the direction of projection.

Discussion

A default camera is created for each vtkWINDOW with these properties: position
and focal point such that all objects are visible, with the camera centered on the
entire scene; view up along the Y axis; view angle set to 30 degrees; and a clipping
range set to 0.1, 1000.0.

NOTE vtkSURFACE, vtkSCATTER and vtkPOLYSHADE change this default
and set the up vector to be along the z axis.

Example
pyramid_list = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[.5,.5,1]]

vertex_list=[3,0,2,4,3,2,3,4,3,3,1,4,3,1,0,4,4,0,1,3,2]

vtkPolyshade, pyramid_list, vertex_list

vtkCamera, Azimuth=25, Elevation=45, ViewAngle=120

vtkCLOSE Procedure
Closes the VTK process.

Usage

vtkCLOSE

Input Parameters

None.

Keywords

None.

52 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Discussion

This procedure closes all VTK windows and shuts down the Tcl/Tk-spawned pro-
cess. It should be called before exiting PV-WAVE.

Example

A standard close call.

vtkCLOSE

See Also

vtkINIT, vtkWINDOW, vtkERASE, vtkWDELETE

vtkCOLORBAR Procedure
Adds a color bar legend to a VTK scene using the current PV-WAVE color table.

Usage

vtkCOLORBAR

Keywords

Vertical — If set, the color bar is aligned vertically. Default alignment is horizontal.

Title — The title of the legend. (Default: none)

Position — A three-element array, the position of the lower left corner of the color
bar. (Default: [0,0,0])

NumLabels — The number of labels to draw. (Default: 5)

Width — The width of the legend in device coordinates. (Default: 0.8, or 0.15 with
/Vertical)

Height — The height of the legend in device coordinates. (Default: 0.15, or 0.9
with /Vertical)

CRange — A two-element vector, the range of colors (Default: [0,255])

LRange — A two-element vector, the label range (Default: CRange)

vtkCOMMAND Procedure 53

Sigfig — An integer, the number of significant figures to use for the labels.
(Default: 3).

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name is specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

NoShadow — If set, labels are drawn without shadows.

vtkCOMMAND Procedure
Sends Tcl and VTK commands to the Tcl process.

Usage

vtkCOMMAND, command

Input Parameters

command — A string representing the VTK command to invoke.

Keywords

Result — A string or string array containing any results from the execution of the
command in the Tcl shell.

Discussion

The Basic interface to send raw Tcl or VTK commands to the spawned Tcl process.

Example

Use vtkCOMMAND to set the background blue.

vtkwindow, 1

vtkcommand, ‘renderer1 SetBackground 0.0 0.0 1.0’

vtkrenderwindow

See Also

vtkRENDERWINDOW

54 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkERASE Procedure
Erases the contents of the current VTK window.

Usage

vtkERASE [, background_color]

Input Parameters

background_color — (optional) The background color to be used for the window,
specified as a 24-bit color. See vtkWINDOW (page 85) for possible ways to spec-
ify the color.

Keywords

None.

Discussion

This procedure works like ERASE for PV-WAVE windows. It removes all actors,
cameras, and lights from the current window.

Example

This example shows vtkERASE removing the axes from the window.

vtkwindow, 1

vtkaxes

vtkerase

See Also

ERASE, VtkCLOSE, vtkWINDOW

vtkGRID Procedure 55

vtkGRID Procedure
Adds 3D grid lines to a VTK scene.

Usage

vtkGRID [, Number=n]

Keywords

Number — A scalar or a three element array, the number of segments with grid
lines in each (x, y, z) direction. (Default: [1,1,1], a box)

Lengths — A scalar or a three-element array, the extent of the grid. (Default:
[1,1,1])

Position — A three-element array, the position of the origin of the grid. (Default:
[0,0,0])

Color — The color to use for the polylines (passed to vtkPLOTS). See vtkWIN-
DOW for possible ways to specify the color. (Default: ’white’)

Thick — A float, the thickness of the grid lines (passed to vtkPLOTS). (Default:
1.0)

Name — A string, the name to be used to create this object. If an undefined vari-
able is used or no name is specified, then a random name is used. This name can be
used in calls to vtkCOMMAND to modify this object.

UseAxes — If nonzero, the most recently created vtkAXES scale is used to define
the Lengths array, which then does not need to be defined explicitly.

LOD — If nonzero, use level-of-detail actors for the grid lines (passed to
vtkPLOTS).

Example
vtkSURFACE, DIST(20)

vtkGRID, /useAxes, Thick=6

vtkGRID, Number=[2,2,6], Color=’red’, Thick=4, /useAxes

56 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkHEDGEHOG Procedure
Creates a HedgeHog (vector) plot.

Usage

vtkHEDGEHOG, points, vectors, scalars

Input Parameters

points — A 3, n array of points (location of the lines).

vectors — A 3, n array of vectors (orientation and length of the lines).

scalars — (optional) An n-element array of scalars (colors of the lines).

Keywords

Scalefactor — A float, a scaling factor to control the size of the oriented lines of
the HedgeHog object (Default: 1.0).

SRange — A two-element integer array, the scalar range (Default: [0,255]).

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoAxes — If set, no axes are created.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

These keywords are passed to vtkAXES:

See vtkAXES for descriptions.

Charsize TextColor [XYZ]Title [XYZ]Ticks

[XYZ]Tickv [XYZ]Tickn TickScale TickSymbol

Labels Sigfig Format

vtkHEDGEHOG Procedure 57

Example

This example plots a Hanning surface and its normals.

LOADCT, 2

n = 50

x = REBIN(INDGEN(n),n,n)

y = TRANSPOSE(x)

z = (n/2)*(HANNING(n,n))

norm = NORMALS(JACOBIAN(LIST(x,y,z)))

;

points = FLTARR(3,n*n,/NoZero)

points(0,*) = x(*)

points(1,*) = y(*)

points(2,*) = z(*)

vectors = FLTARR(3,n*n,/NoZero)

vectors(0,*) = (norm(0))(*)*SQRT(z(*))

vectors(1,*) = (norm(1))(*)*SQRT(z(*))

vectors(2,*) = (norm(2))(*)*SQRT(z(*))

scalars = z(*)

;

vtkHedgeHog, points, vectors, scalars, /NoAxes, scalef=0.75

vtkSurface, REFORM(points(2,*),n,n), $

 Shades=REBIN([0.8,0.8,0.8,.75],4,n,n), $

 /NoErase, /NoRotate, /NoAxes

See Also

vtkAXES

58 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkINIT Procedure
Initializes the VTK system.

Usage

vtkINIT

Input Parameters

None.

Keywords

File — If set, a temporary file is used to communicate data sets to VTK instead of
a socket connection. For very large data sets with many floating-point values, this
method is considerably faster; however, read/write permissions are required. If set
to one (/File), any data set greater than 1024 bytes is written to file. If set to a
value (File=fbytes), data sets larger than fbytes are written to file; smaller data
sets are sent via sockets. Setting /File is equivalent to setting File=1024. This key-
word affects only data: commands are always sent by the socket connection.

Noshell — If set, the keyword is passed along to the SPAWN procedure that ini-
tiates the VTK Tcl process. This keyword is required when calling VTK routines
from a JWAVE wrapper and should not be used otherwise.

Path — Used in conjunction with the File keyword, a string indicating the file path
to the directory where the temporary file(s) are to be created.

Print — If present and nonzero, causes the output from the spawned Tcl/Tk shell
to be sent back to PV-WAVE and displayed in the console. This keyword is useful
for debugging low-level VTK calls.

Timeout — A floating point scalar specifying a time interval in seconds which
vtkINIT will wait before giving up on establishing a socket connection to the
spawned Tcl shell. (Default: 20)

Discussion

This procedure must be performed before any other VTK commands. It causes a
Tcl/Tk shell to be spawned and sets up communication with it. It also initialized
various internal VTK parameters. The following routines will automatically call

vtkLIGHT Procedure 59

vtkINIT if it has not already been called: vtkWINDOW, vtkPOLYSHADE, vtk-
SURFACE, and vtkSCATTER.

Example

This example uses vtkINIT to initialize VTK with a timeout of 10 seconds.

vtkINIT, timeout=10

See Also

VtkCLOSE

vtkLIGHT Procedure
Adds a light to a VTK window.

Usage

vtkLIGHT

Input Parameters

None.

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Color — The color for the light. See vtkWINDOW (page 85) for possible ways to
specify the color. (Default: ’white’)

Position — An array of three floating point numbers describing the x, y, and z posi-
tion for the light. The default behavior is to have the light follow the camera
position.

FocalPoint — An array of three floating point numbers describing the x, y, and z
position for the light’s focal point.

Intensity — A float value between 0.0 and 1.0 specifying the intensity of the light.

60 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

DirectionAngle — An array of two floating point numbers that set the position and
focal point of a light based on elevation and azimuth. The light is moved to shine
from the given angle. Angles are given in degrees.

Discussion

A white light, which follows the camera position, is created by default for a VTK
Window.

NOTE Other light parameters not supported in this wrapper can be set using the
assigned Name and vtkCOMMAND.

Example
pyramid_list = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[.5,.5,1]]

vertex_list=[3,0,2,4,3,2,3,4,3,3,1,4,3,1,0,4,4,0,1,3,2]

vtkPolyshade, pyramid_list, vertex_list

vtkLight, Color=’0000FF’XL, Position=[10,10,10]

vtkLight, Color=’00FF00’XL, Position=[10,10,-10]

vtkLight, Color=’FF0000’XL, Position=[-10,-10,-10]

vtkPLOTS Procedure
Adds a polyline.

Usage

vtkPLOTS, points

Input Parameters

points — An array of floating point numbers of size (3, n) where n is the number
of points. points(0,*) is taken as an x value, points(1,*) is taken as a y
value, and points(2,*) is taken as a z value.

vtkPLOTS Procedure 61

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Color — The color to use for the polyline. See vtkWINDOW (page 85) for possible
ways to specify the color. (Default: ’white’)

Thick — A float describing the thickness of the polyline. The default is 1.0, which
is scaled to correspond to a radius of 0.001 in data coordinates.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

Nolines — If nonzero, causes a cloud of points to be displayed rather than a
polyline.

Discussion

This procedure is similar to the PLOTS procedure for PV-WAVE windows.
Polylines are drawn as connected cylinders.

Example
z = findgen(1000)/999

x = z*sin(50*z)

y = z*cos(50*z)

vtkplots, transpose([[x],[y],[z]]), thick=5, color=’blue’

vtkwindow,2

vtkplots, transpose([[x],[y],[z]]), color=’red’,/nolines

See Also

PLOTS, vtkSCATTER

62 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkPOLYDATA Procedure
Passes vertex/polygon lists, lines, points, and triangles to VTK.

Usage

vtkPOLYDATA, points

Input Parameters

points — A two-dimensional array of floating point numbers of size (3, n) describ-
ing x, y, and z points.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is not sent to VTK if this parameter is specified.

Polygons — A vector of integers describing polygons, organized as vertex count
followed by indices into points, repeated for all polygons. This is the same format
as a polygon list used in POLYSHADE.

Vertices — A vector of integers describing vertices, organized as vertex count fol-
lowed by indices into points, repeated for all vertices.

Lines — A vector of integers describing polylines, organized as vertex count fol-
lowed by indices into points, repeated for all polylines.

Triangle_Strips — A vector of integers describing triangle strips, organized as ver-
tex count followed by indices into points, repeated for all triangle strips.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

vtkPOLYSHADE Procedure 63

Discussion

Contains points and polygons (like the polygon vertex list in PV-WAVE) as well
as vertices, lines, and triangle strips. See the VTK documentation, which can be
downloaded from http://public.kitware.com, for more details on the data and
attributes for the PolyData dataset format.

vtkPOLYSHADE Procedure

Renders a polygon object.

Usage
vtkPOLYSHADE, vertices, polygons

Input Parameters
Vertices — A (3, n) array containing the x-, y-, and z-coordinates of each vertex in
data coordinates.

Polygons — An integer or longword array containing the indices of the vertices of
each polygon. The vertices of each polygon should be listed either clockwise or
counterclockwise order when observed from outside the surface. The vertex
description of each polygon is a vector of the form [n, i0, i1, ... , in - 1], and the
array polygons is the concatenation of the lists of each polygon.

Keywords
Name — Specify a name to be used to create this object. If an undefined variable
is used or no name specified then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Color — An array expression, of the same dimensions as the number of vertices
passes (the value “n” above), containing the color index at each vertex. Alter-
nately an expression describing one color to be used for the entire polygonal sur-
face or wireframe. If this keyword is omitted, a white surface is displayed.

To specify a single color, see vtkWINDOW (page 85) for possible ways to specify
the color. If a two-dimensional array of colors is specified (for an image overlay)
the shades variable can be in any of these formats:

64 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoAxes — If set, no axes are created.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoErase — If nonzero prevents the window from being erased to the background
color before drawing the new scene. If not set then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

These keywords are passed to vtkAXES:

Other keywords are listed below. For a description of each keyword, see Chapter
3, Graphics and Plotting Keywords in the PV-WAVE Reference.

FIX(n) A one-dimensional array of short integers or bytes spec-
ifying an index into the current PV-WAVE color table
for each point. The RGB color for each point is obtained
from the corresponding entry in the current PV-WAVE
color table.

LONG(n) A one-dimensional array of long integers specifying the
24-bit color at each point.

FLOAT(3, n) A floating point array of size (3, n) containing the nor-
malized values specifying the red, green, and blue com-
ponents of the color at each point.

FLOAT(4, n) A floating point array of size (4, n) containing the nor-
malized values specifying the red, green, blue, and
alpha components of the color at each vertex. The alpha
component is the transparency where 0.0 is completely
transparent and 1.0 is opaque.

[XYZ]Ticks [XYZ]Tickv [XYZ]Tickn TickScale

TickSymbol Labels Sigfig Format

Ax Az

vtkPPMREAD Function 65

Discussion

This procedure is similar to the POLYSHADE procedure for PV-WAVE windows.
Wireframes can be produced as well as surfaces shaded in one color or overlaid
with an image. Transparency is also supported.

Example
pyramid_list = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[.5,.5,1]]

vertex_list=[3,0,2,4,3,2,3,4,3,3,1,4,3,1,0,4,4,0,1,3,2]

vtkPolyshade, pyramid_list, vertex_list, color=’blue’

See Also

AXIS, POLYSHADE

vtkPPMREAD Function
Reads a PPM file.

Usage

image = vtkPPMREAD (filename)

Input Parameters

filename — File path of PPM file.

Returned Value

image — An array (3, width, height) of bytes containing the 24-bit image.

Keywords

None.

66 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Discussion

This function is used to read the rudimentary PPM binary files created by VTK and
containing images stored as RGB values. The images can be displayed with TV,
image, True=1 or converted to an 8-bit image using ipcolor_24_8.

Example

Example of reading the file wave.ppm and storing an image.

Image=vtkppmread(‘wave.ppm’)

See Also

vtkPPMWRITE, vtkTVRD

vtkPPMWRITE Procedure
Writes the contents of a VTK window to a PPM file.

Usage

vtkPPMWRITE [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

Filename — File path to store PPM file. (Default: ’wave.ppm’)

Discussion

This procedure saves a snapshot of the selected window as a PPM file. It is impor-
tant to make sure the VTK window fully visible when this routine is called because
an obscuring portion of another window will be captured as part of the image. This
is a limitation of VTK.

vtkRECTILINEARGRID Procedure 67

Example 1

Writing a PPM file.

vtkwindow, 1

vtkaxes

vtkPPMWRITE, 1

Example 2

Writing the PPM file to the file name of PV.ppm.

vtkwindow, 2, background=’blue’

vtkPPMWRITE, 2, filename=’PV.ppm’

See Also

vtkPPMREAD, vtkTVRD

vtkRECTILINEARGRID Procedure
Passes data describing a rectilinear grid to VTK.

Usage

vtkRECTILINEARGRID, Dimensions

Input Parameters

Dimensions — A 3-element vector of integers describing dimensions in x, y, and z.
Use 1 for the third dimension if only a two-dimensional array is described.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

68 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Save — Returns the data in the specified variable stored in an associative array.
Data is not sent to VTK if this parameter is specified.

X_coordinates — A vector of floating point numbers of the same length as the first
dimension in Dimensions describing monotonically increasing coordinate values.
Increasing integers starting with 0 are used as a default.

Y_coordinates — A vector of floating point numbers of the same length as the sec-
ond dimension in Dimensions describing monotonically increasing coordinate
values. Increasing integers starting with 0 are used as a default.

Z_coordinates — A vector of floating point numbers of the same length as the third
dimension in Dimensions describing monotonically increasing coordinate values.
Increasing integers starting with 0 are used as a default.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

Discussion

This procedure creates a dataset with a regular topology and semiregular geometry
aligned along the x, y, and z axes. See the VTK documentation, which can be down-
loaded from http://public.kitware.com, for more details on the data and attributes
for the RectiliniarGrid dataset format.

vtkRENDERWINDOW Procedure
Renders a VTK window.

Usage

vtkRENDERWINDOW [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

None.

vtkRENDERWINDOW Procedure 69

Discussion

Call this procedure after all objects (lights, cameras, surfaces, polygon meshes,
etc.) have been added to the window. This routine starts the rendering process and
creates the initial rendered scene. You need to call this procedure only if you used
the Norender keyword with vtkWINDOW, or if you are making low-level calls to
VTK using vtkCOMMAND.

Example 1

This example shows the essense of vtkRENDERWINDOW.

vtkwindow, 1, /norender

vtkaxes

vtkrenderwindow

Example 2

A more complicated example:

vtkwindow, 2, /norender

V=[[0,0,0],[1,0,0],[1,1,0],[0,1,0]]

p=[4,0,1,2,3]

vtkpolyshade, v, p

vtkaxes

vtktext, ‘This is VTK’, charsize=[1.0,1.0,1.0], color=’blue’

vtkrenderwindow, 2

See Also

vtkWINDOW, vtkCOMMAND

70 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkSCATTER Procedure
Renders 3D points.

Usage

vtkSCATTER, points

Input Parameters

points — A float array of size (3, n) describing x, y, and z points in data coordinates.

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Symbol — A scalar integer describing the type of marker or glyph to be displayed
for each point. Supported values are 0-4 where:

0 = Sphere

1 = Cube

2 = Cone

3 = Cylinder

4 = Earth

Color — An array expression of the same dimensions as the number of points (the
value n above), containing the color index at each point. Alternately an expression
describing one color to be used for all points. If this keyword is omitted, white
points are displayed.

To specify a single color, see vtkWINDOW (page 85). If a vector of colors is spec-
ified, the color variable can be in any of these formats:

FIX(n) A one-dimensional array of short integers or bytes spec-
ifying an index into the current PV-WAVE color table
for each point. The RGB color for each point is obtained
from the corresponding entry in the current PV-WAVE
color table.

vtkSCATTER Procedure 71

Scale — A float value specifying the scaling factor for the size of each glyph.
(Default: 1.0)

LOD — If nonzero, the glyphs are created as level-of-detail actors to aid in keeping
a high frame-rate during frequent render requests due to user mouse interaction. If
set to a value greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

NoAxes — If present and non zero, then no x, y, and z axes will be drawn.

TextColor — The color for text used for the axes titles. See vtkWINDOW (page
85) for possible ways to specify the color. (Default: ’white’)

These keywords are passed to vtkAXES:

Other keywords are listed below. For a description of each keyword, see Chapter
3, Graphics and Plotting Keywords in the PV-WAVE Reference.

Discussion

This procedure plots points in space using three-dimensional markers (glyphs) with
optional axes.

LONG(n) A one-dimensional array of long integers specifying the
24-bit color at each point.

FLOAT(3, n) A floating point array of size (3, n) containing the nor-
malized values specifying the red, green, and blue com-
ponents of the color at each point.

[XYZ]Ticks [XYZ]Tickv [XYZ]Tickn TickScale

TickSymbol Labels Sigfig Format

Ax Az Charsize

[XYZ]Title[[XYZ]Range

72 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Example
data=FLTARR(3,200)

; Create the data array.

s=DC_READ_FREE(!Data_Dir+’scattered.dat’,data,/Column,/Resize)

; Read in the data

vtkSCATTER,data

; A quick look at the data.

TEK_COLOR

; Set up a color table.

s=SIZE(data) & c=INDGEN(s(2))

; Create an array of color values for the points.

 vtkSCATTER,data,Color=c,Xtitle=’X Values’,Ytitle=’Y $
Values’, $

Ztitle=’Z Values’,TextColor=16,ax=10,az=100,Scale=.6

; A better look at the data.

See Also

AXIS vtkPLOTS

vtkSLICEVOL Procedure
Creates a sliced 3D volume at specific x, y, z locations.

Usage

vtkSLICEVOL, v, [sx=sx, sy=sy, sz=sz, xc=xc, yc=yc, zc=zc]

Input Parameters

v — A 3D array, the volume to slice.

Keywords

sx — A 1D array, the x coordinate(s) at which to slice the volume.

sy — A 1D array, the y coordinate(s) at which to slice the volume.

sz — A 1D array, the z coordinate(s) at which to slice the volume.

vtkSLICEVOL Procedure 73

xc — A 1D array with the same number of elements as the first dimension of v, the
x coordinates of the volume.

yc — A 1D array with the same number of elements as the second dimension of v,
the y coordinates of the volume.

zc — A 1D array with the same number of elements as the third dimension of v, the
z coordinates of the volume.

Interp — If set, the shading is interpolated (passed to RESAMP).

Dim — An integer, the number of vertices on each side of each plane. (Default: 25)

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

Other keywords are listed below. For a description of each keyword, see Chapter
3, Graphics and Plotting Keywords in the PV-WAVE Reference.

Discussion

If no slices are requested through the sx, sy, and sz keywords, the volume is sliced
at the midpoints of each index.If xc, yc, or zc are not provided, indices into v are
used.

Example
x = genvect(-5,5,.25)

y = genvect(-4,4,.2)

Ax Az

74 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

z = genvect(-3,3,.15)

v = sqrt(TENSOR_ADD(TENSOR_ADD(x^2,0.3*y^2),1.5*z^2))

vtkSliceVol, v, sx=[-4,.4,2.6], sy=-.15, sz=[-3,1], $

 xc=x, yc=y, zc=z, dim=15

See Also

SLICE

vtkSTRUCTUREDGRID Procedure
Passes data describing a structured grid to VTK.

Usage

vtkSTRUCTUREDGRID, dimensions, points

Input Parameters

dimensions — A 3-element vector of integers describing dimensions in x, y, and
z. Use “1” for the third dimension if only a two-dimensional array is described.

points — A two-dimensional array of floating point numbers of size (3, n) describ-
ing x, y, and z points.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is not sent to VTK if this parameter is specified.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

vtkSTRUCTUREDPOINTS Procedure 75

Discussion

1, 2, or 3D point data on a topological grid, where the actual points are specified as
x, y, and z values in Cartesian coordinates. See the VTK documentation, which can
be downloaded from http://public.kitware.com, for more details on the data and
attributes for the StructuredGrid dataset format.

vtkSTRUCTUREDPOINTS Procedure
Passes data describing structured points to VTK.

Usage

vtkSTRUCTUREDPOINTS, dimensions

Input Parameters

dimensions — A 3-element vector of integers describing dimensions in x, y, and z.
Use 1 for the third dimension if only a two-dimensional array is described.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is NOT sent to VTK if this parameter is specified.

Origin — A 3-element vector of floating point numbers containing the x, y, and z
origin point for the data.

Spacing — A 3-element vector of floating point numbers containing the spacing
(width, height, length) of the cubical cells that compose the data set.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

76 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Discussion

Definition of a 1, 2, or 3D arrays (describing lines, grids and voxels), their origin,
and spacing. See the VTK documentation, which can be downloaded from http://
public.kitware.com, for more details on the data and attributes for the Structured-
Points dataset format.

vtkSURFACE Procedure
Renders a surface.

Usage

vtkSURFACE, z [,x] [,y]

Input Parameters

z — A two-dimensional array containing the values that describe the surface. If x
and y are supplied, the surface is plotted as a function of the x and y locations spec-
ified by their contents. Otherwise, the surface is generated as a function of the array
index of each element of z.

x — (optional) A vector or two-dimensional array specifying the x-coordinates for
the surface.

If x is a vector, each element of x specifies the x-coordinate for a column of z. For
example, x(0) specifies the x-coordinate for z(0, *).

If x is a two-dimensional array, each element of x specifies the x-coordinate of the
corresponding point in z (xij specifies the x-coordinate for zij).

y — (optional) A vector or two-dimensional array specifying the y-coordinates for
the surface.

If y is a vector, each element of y specifies the y coordinate for a row of z. For exam-
ple, y(0) specifies the y-coordinate for z (*, 0).

If y is a two-dimensional array, each element of y specifies the y-coordinate of the
corresponding point in z (yij specifies the y-coordinate for zij).

vtkSURFACE Procedure 77

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Shades — An array expression of the same dimensions as z, containing the color
index at each point. Alternately, an expression describing one color to be used for
the entire surface or wireframe. If this keyword is omitted, a white surface is
displayed.

To specify a single color, see vtkWINDOW (page 85). If a two-dimensional array
of colors is specified (for an image overlay), the shades variable can be in any of
these formats:

Fix(x, y) — A two-dimensional array of short integers or bytes specifying an index
into the current PV-WAVE color table for each point. The RGB color for each point
is obtained from the corresponding entry in the current PV-WAVE color table.

Long(x, y) — A two-dimensional array of long integers specifying the 24-bit color.

Float(3, x, y) — A floating point array of size (3, x, y) containing the normalized
values specifying the red, green, and blue components of the color at each point.

Float(4,x) — A floating point array of size (4, x, y) containing the normalized val-
ues specifying the red, green, blue, and alpha components of the color at each point.
The alpha component is the transparency where 0.0 is completely transparent and
1.0 is opaque.

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoAxes — If present and non zero, then no x, y, or z axes will be drawn.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

TextColor — The color to use for text used for the axes titles. See vtkWINDOW
for possible ways to specify the color. (Default: ’white’)

78 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

These keywords are passed to vtkAXES:

Other keywords are listed below. For a description of each keyword, see Chapter
3, Graphics and Plotting Keywords in the PV-WAVE Reference.

Discussion

This procedure is similar to the SURFACE and SHADE_SURF procedures for
PV-WAVE windows. Wireframes can be produced as well as surfaces shaded in
one color or overlaid with an image. Transparency is also supported.

Example

This example demonstrates a surface created in a regular PV-WAVE window com-
pared to one using vtkSURFACE.

pikes=FLTARR(60,40)

s=DC_READ_FREE(!Data_Dir+’pikeselev.dat’,pikes)

; Read in the data values for elevation.

snow=FLTARR(60,40)

s=DC_READ_FREE(!Data_Dir+’snowpack.dat’,snow)

; Read in the data for snowpack

loadct,5

; Load a color table.

surface,pikes

; Create a wiremesh surface using a regular PV-WAVE window.

vtksurface,pikes/250,/wireframe

; Create a wiremesh surface using the VTK toolkit. Notice that the toolkit doesn’t scale
; the data for you so in order to make sense out of the resulting graphic you need to
; scale the data yourself, in this example it was done by dividing by 250.

shade_surf,pikes,shades=bytscl(snow)

; Create a shaded surface using a regular PV-WAVE window.

vtksurface,pikes/250,shades=bytscl(snow)

[XYZ]Ticks [XYZ]Tickv [XYZ]Tickn TickScale

TickSymbol Labels Sigfig Format

Ax Az Charsize

[XYZ]Title[[XYZ]Range

vtkSURFGEN Procedure 79

; Create a shaded surface using the VTK toolkit. As above, the user does the scaling
; of the data.

See Also

AXIS, vtkAXES

vtkSURFGEN Procedure
Generates a 3D surface from sampled points assumed to lie on a surface.

Usage

vtkSURFGEN, points

Input Parameters

points — A 3, n array of points that lie on a surface.

Keywords

Reverse — By default, the normals of the computed surface are inward facing. If
outward normals are required, set this keyword.

Neighbors — An integer, the number of neighbors each points has. Use a larger
value if the spread of points is not even. (Default: 20)

Spacing — A float, the spacing of the 3D sampling grid. If not set, the VTK class
makes a reasonable guess.

Filename — An ASCII VTK file to create containing the dataset generated by the
VTK filter.

Data — (Output). A returned associative array containing two keys:
data(“POINTS”) is a 3, n float array containing the points generated by the VTK
filter and data(“VERTICES”) is an n+1 element long array containing topology
information for the generated dataset. A filename must be defined to have data
returned by this keyword.

Name — A string, the name to be used to create this object. If an undefined vari-
able is used or no name is specified, then a random name is used. This name can be
used in calls to vtkCOMMAND to modify this object.

80 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Color — The color to use for the generated surface. See vtkWINDOW for possible
ways to specify the color. (Default: ’white’)

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

This routine also accepts these keywords to control the initial camera and the axes
(see vtkSURFACE and vtkAXES):

Example
@math_startup

s = TRANSPOSE(random(100, /Sphere, Parameter=3))

vtkSURFGEN, s, /NoAxes

vtkSCATTER, s, /NoAxes, Symb=1, Color=’red’, Scale=0.5, $

 /NoRotate, /NoErase

See Also

vtkAXES, vtkSURFACE

[XYZ]Range Ax Az NoRotate

NoAxes NoErase Charsize TextColor

[XYZ]Title [XYZ]Ticks [XYZ]Tickv [XYZ]Tickn

Tickscale Ticksymbol Labels Format

Sigfig

vtkTEXT Procedure 81

vtkTEXT Procedure
Adds a text string.

Usage

vtkTEXT, string

Input Parameters

string — The scalar string containing the text that is to be output to the display sur-
face. If not of string type, it is converted prior to use.

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Position — An array of three floating point numbers specifying the x, y, and z posi-
tion for the beginning of text. (Default: [0,0,0])

Color — The color to use for text. See vtkWINDOW (page 85) for possible ways
to specify the color. (Default: ’white’)

Follow — If nonzero, forces the text to always be facing the camera.

Orientation — An array of three floating point numbers specifying the x, y, and z
rotations of text in degrees. The actual rotations are performed in this order: z then
x and finally y. This keyword has no effect if Follow is specified.

Keyword Charsize is also supported. For a description, see Chapter 3, Graphics
and Plotting Keywords in the PV-WAVE Reference.

Discussion

This procedure is similar to the XYOUTS procedure for PV-WAVE windows.

Example
vtkText, "This is vtkText", color="red", charsize=10

82 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkTVRD Function
Returns the contents of a VTK window as a bitmapped image.

Usage

image = vtkTVRD([window_index])

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

Filename — File path to store a temporary PPM file. Default is “wave.ppm.”

Returned Value

image — An array (3, width, height) of bytes containing the 24-bit image.

Discussion

This function works like TVRD for PV-WAVE windows. It uses vtkPPMWRITE
and vtkPPMREAD to save and then read the contents of a window. The temporary
file created is deleted when done.

Example
vtkWINDOW, 7

vtkAXES

tv, vtkTVRD(7), /TRUE

See Also

TVRD, vtkPPMWRITE, vtkPPMREAD

vtkUNSTRUCTUREDGRID Procedure 83

vtkUNSTRUCTUREDGRID Procedure
Passes data describing an unstructured grid to VTK.

Usage

vtkUNSTRUCTUREDGRID, points, cells, cell_types

Input Parameters

points — A two-dimensional array of floating point numbers of size (3, n) describ-
ing x, y, and z points.

cells — A Vector of integers describing cells, organized as vertex count followed
by indices into Points, repeated for all cells.

Cell_types — A Vector of integers describing the cell type for each cell. Valid types
are values between 1-12.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is NOT sent to VTK if this parameter is specified.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

Discussion

Arbitrary combinations of twelve (12) cell types, ranging from points, lines, poly-
gons to voxels. See the VTK documentation, which can be downloaded from http:/
/public.kitware.com, for more details on the data and attributes for the UnStruc-
turedGrid dataset format.

84 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkWDELETE Procedure
Closes a VTK window without shutting down the Tcl process.

Usage

vtkWDELETE [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

All — If nonzero, causes all VTK windows to be closed.

Discussion

This procedure works like WDELETE for PV-WAVE windows. It closes an indi-
vidual VTK window but does not shut down the Tcl process. Use vtkCLOSE to
close all windows and shut down the spawned Tcl process.

Example 1

Deleting a window.

vtkwindow, 1

vtkwdelete

Example 2
vtkwindow, 1

vtkwindow,2

vtkwindow,3

vtkwdelete, /all

See Also

vtkCLOSE, vtkWINDOW

vtkWINDOW Procedure 85

vtkWINDOW Procedure
Creates a VTK window.

Usage

vtkWINDOW [,window_index]

Input Parameters

window_index — (optional) An integer specifying the index of the newly created
window.

If window_index is omitted, 0 is used as the index of the new window.

If the value of window_index specifies an existing window, the existing window is
deleted and a new window is created.

Keywords

Free — If nonzero, creates a window using an unused window index. This key-
word can be used instead of specifying the window_index parameter.

NoRender — If nonzero, prevents individual objects (vtkLIGHT, vtkAXES, vtk-
POLYSHADE, etc.) from being rendered as they are added to the window.
Specifying NoRender can speed up the initial display of a scene if you have multi-
ple objects in it. If specified, you must manually call vtkRENDERWINDOW after
you have added all of your objects to the window.

Background — Background color for the window. The color can be specified in
any of the following ways (the color ‘red’ is used here as an example):

‘red’ See the file <vni>/vtk-3_2/lib/vtkcolornames.pro for
a complete list of supported color names, where <vni> is
the path to the PV-WAVE installation.

‘FF0000’XL A long integer hexadecimal value specifying the 24-bit
color.

[1.0, 0.0, 0.0] A three-element vector of normalized floating point val-
ues specifying the red, green, and blue components of the
color.

86 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

/NoInteract — If nonzero, indicates that you do not wish to provide the standard
set of mouse controls for viewing the 3D scene. The resulting scene can be manip-
ulated only by programmatically setting the positional parameters for objects or
cameras.

XPos, YPos — The x and y positions of the lower-left corner of the new window,
specified in device coordinates.

If no position is specified, a position of (0,0) is used.

XSize — The width of the window, in pixels. (Default: 400)

YSize — The height of the window, in pixels. (Default: 400)

Discussion

This procedure is similar to the PV-WAVE WINDOW command. It allows the cre-
ated window to have built-in interaction associated with it.

Example 1

This example shows how to bring up a VTK window.

vtkWINDOW, 1

Example 2

This example shows how to bring up a VTK window with a blue background and
with the mouse controls disabled. windownum is the number of the free window.

vtkWINDOW, windownum, /Free, background=’blue’, /nointeract

See Also

vtkRENDERWINDOW, vtkCLOSE, vtkWDELETE, vtkERASE, vtkWSET

2 If a short byte or short integer value is passed, the RGB
color is obtained from the corresponding entry in the cur-
rent PV-WAVE color table. In this case, when
TEK_COLOR has been called, color index 2 is red.

vtkWRITEVRML Procedure 87

vtkWRITEVRML Procedure
Creates a Virtual Reality Modeling Language file (VRML .wrl file) from a scene
in a VTK window.

Usage

vtkWRITEVRML, filename [, WindowID=id, Speed=s]

Input Parameters

Filename — A string, the file to write (should end in “.wrl”).

Keywords

Windowid — An integer, the VTK window to use as the source. (Default: the cur-
rently active VTK window)

Speed — A float, the navigation speed. (Default: 4.0)

Discussion

To view a VRML .wrl file in a browser, you need a plug-in. Consult the FAQ at
http://www.vrml.org for current information and to obtain a plug-in.

See Also

VRML Routines

88 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

vtkWSET Procedure
Sets the active VTK window.

Usage

vtkWSET [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

None.

Discussion

This procedure works like WSET for PV-WAVE windows, which is used to select
the current, or "active" window to be used by the VTK routines.

Example

Setting the window to the first window opened.

vtkwindow, 1

vtkwindow, 2

vtkwindow, 3

vtkaxes

vtkwset, 1

vtkaxes

See Also
vtkWINDOW, WSET

WgOrbit Procedure 89

WgOrbit Procedure
Creates an interactive window for viewing objects.

Usage

WgOrbit, vertices, polygons, parent, shell

Input Parameters

vertices — A (3,n) array of points on the surfaces of the objects.

polygons — A vector defining polygons which describe the surfaces: it is a
concatenation of vectors of the form [m,i1, ...,im] where m is the number of vertices
defining a polygon and where vertices (*,i1),...,vertices(*,im) are those vertices
arranged in counter-clockwise order when viewed from outside the object.

parent — (optional) The widget ID of the parent widget.

Output Parameters

shell — (optional) The ID of the newly created widget.

Keywords

position — A two-element vector positioning the widget’s upper-left corner
(measured in pixels from the upper-left corner of the screen).

shades — A vector specifying the color for each vertex.

size — Two-element vector specifying window size. The default is [500,500].

title — A string specifying the title for the widget.

wid — (output) The window ID of the graphics window.

Examples
POLY_SPHERE, 1, 10, 10, v, p

v(1:2,*) = [2*v(1,*), 3*v(2,*)]

WgOrbit, v, p

90 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

WIN32_PICK_PRINTER Function
Displays a Windows printer dialog.

Usage

printer_name = WIN32_PICK_PRINTER()

Input Parameters

None.

Returned Value

printername — The name of the printer.

Keywords

None.

See Also

WIN32_PICK_FONT

DB_GET_BINARY Function 91

New PV-WAVE:Database Connection Functions
This section lists the new functions that have been added to PV-WAVE:Database
Connection for version 7.5. For complete descriptions, see the
PV-WAVE:Database Connection User’s Guide.

DB_GET_BINARY Function
Returns binary large objects (BLOBS) from a DBMS (database management
system) server.

Usage
list_var = DB_GET_BINARY(handle, sql_query)

Input Parameters
handle — DBMS connection handle (returned by DB_CONNECT).

sql_query — A string containing an SQL statement to execute on the DBMS
server. It must be a query (SELECT) statement.

Returned Value
list_var — A PV-WAVE LIST variable, one for each row in the query. Each
element in the LIST is a PV-WAVE array of type BYTE.

Keywords
None.

Discussion
Since binary large objects (BLOBS) are transmitted from most DBMS systems in
a different way from other data types, using DB_SQL to handle BLOBS would
compromise performance.

For queries that return more than one row, specify the order of the rows with the
ORDER BY clause in the sql_query.

NOTE One column will cause an error.

CAUTION The value of sql_query is subject to the following restrictions:

❑ It must be a query. UPDATE, INSERT, and/or DELETE will cause an error.
❑ It must only return one column. Queries that return more than one column will

cause an error.

92 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

NULL_PROCESSOR Function
Facilitates the use of the Null_Info keyword for the DB_SQL function by extract-
ing the list of rows containing missing data for one or more columns.

Usage

table =
NULL_PROCESSOR(null_info_object,[‘col1’,’col2’,…,’coln’],Comp=comp)

Input Parameters

null_info_object — The object returned by the Null_Info keyword in the DB_SQL
call.

coli — The list of column names.

Keywords

Comp=comp — Produces the complement to the result, that is, the result contains
a list of rows with missing data. comp contains a list of rows with no missing data.

Discussion

Assuming the following use of the DB_SQL Null_Info keyword:

table=db_sql(db_connect(’oracle’, ’user_id/user_pw’), ’select *
from blanktest’, null_info=foo)

where blanktest contains the data given below, which has missing data for
ID_NO in the 4th, 9th, and 11th rows and missing data for ANIMAL_NAME in the
3rd, 8th, and 10th rows.

NULL_PROCESSOR Function 93

Then,

jjj=NULL_PROCESSOR(foo,[’ID_NO’,’ANIMAL_NAME’],Comp=comp)

produces the results

jjj = 2 3 7 8 9 10

comp = 0 1 4 5 6

This output can be utilized as in the following examples.

Table2 = table(comp)

produces a table with only rows and no missing values or as in the table given
above.

ID_NO ANIMAL_ NAME

1 golden

2 chirpy

3

harry

5 KC

6 skip

7 sparky

8

sneakers

10

harvey

ID_NO ANIMAL_ NAME

1 golden

2 chirpy

5 KC

6 skip

7 sparky

94 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Then,

Table3=table(jjj)

produces a table containing only rows with missing data (note how zeros have been
substituted for values of ID_NO that are missing).

Instead, if you want only the locations where one field is missing, a different db_sql
call, jjj=foopro(foo,[’ID_NO’],Comp=comp), returns an array, jjj, with the rows
where ID_NO is missing (3 8 10).

Remember that rows are counted beginning with 0.

ID_NO ANIMAL_ NAME

3

0 harry

8

0 sneakers

10

0 harvey

Chapter 4: Quadrature 95

New PV-WAVE:IMSL Mathematics Commands
This section lists the new functions and procedures that have been added to
PV-WAVE:IMSL Mathematics for version 7.5.

Chapter 4: Quadrature

INTFCN_QMC Function
Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method.

Usage

result = INTFCN_QMC(f, a, b)

Input Parameters

f  Scalar string specifying the user-supplied function to be integrated. Func-
tion f accepts as input an array of data points at which the function is to be
evaluated and returns the scalar value of the function.

a  One-dimensional array containing the lower limits of integration.

b  One-dimensional array containing the upper limits of integration.

Returned Value

The value of

is returned. If no value can be computed, then NaN is returned.

Input Keywords

Err_Abs  Absolute accuracy desired.

Default: Err_Abs = 1.e-4.

Err_Rel  Relative accuracy desired.

… f x0 … xn 1–, ,() xn 1– …d
an 1–

bn 1–∫

96 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Default: Err_rel = 1.e-4.

Max_Evals  Number of evaluations allowed.

Default: No limit

Base  The value of BASE used to compute the Faure sequence.

Skip  The value of SKIP used to compute the Faure sequence.

Double  If present and nonzero, double precision is used.

Output Keywords

Err_est  Named variable into which an estimate of the absolute value of the
error is stored.

Discussion

Integration of functions over hypercubes by direct methods, such as INTFCN-
HYPER, is practical only for fairly low dimensional hypercubes. This is
because the amount of work required increases exponential as the dimension
increases.

An alternative to direct methods is Monte Carlo, in which the integral is evalu-
ated as the value of the function averaged over a sequence of randomly chosen
points. Under mild assumptions on the function, this method will converge like
1/n1/2, where n is the number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choos-
ing the points at which the function is to be evaluated. Randomly distributed
points tend to be non-uniformly distributed. The alternative to at sequence of
random points is a low-discrepancy sequence. A low-discrepancy sequence is
one that is highly uniform.

This function is based on the low-discrepancy Faure sequence, as computed by
FAURE_NEXT_PT.

Example

FUNCTION F, x

 S = 0.0

 sign = -1.0

 FOR i = 0, N_ELEMENTS(x)-1 DO BEGIN

 prod = 1.0

 FOR j = 0, i DO BEGIN

Chapter 9: Special Functions 97

 prod = prod*x(j)

 END

 S = S + sign*prod

 sign = -sign

 END

 RETURN, s

END

ndim = 10

a = FLTARR(ndim)

a(*) = 0

b = FLTARR(ndim)

b(*) = 1

result = intfcn_qmc(’f’, a, b)

PM, result

 -0.333010

Chapter 9: Special Functions

CUM_INTR Function
Evaluates the cumulative interest paid between two periods.

Usage

result = CUM_INTR (rate, n_periods, present_value, start, end_per, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of payment periods. n_periods cannot be less than
or equal to 0.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

98 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

start  Starting period in the calculation. start cannot be less than 1; or greater
than end_per.

end_per  Ending period in the calculation.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The cumulative interest paid between the first period and the last
period. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function CUM_INTR evaluates the cumulative interest paid between the first
period and the last period.

It is computed using the following:

where interesti is computed from the function INT_PAYMENT for the ith
period.

Example

In this example, CUM_INTR computes the total interest paid for the first year
of a 30-year $200,000 loan with an annual interest rate of 7.25%. The pay-
ment is made at the end of each month.

PRINT, CUM_INTR(0.0725 / 12, 12*30, 200000., 1, 12, 0)

 -14436.5

_end per

i
i start

interest
=
∑

CUM_PRINC Function 99

CUM_PRINC Function
Evaluates the cumulative principal paid between two periods.

Usage

result = CUM_PRINC (rate, n_periods, present_value, start, end_per, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of payment periods. n_periods cannot be less than
or equal to 0.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

start  Starting period in the calculation. start cannot be less than 1; or greater
than end_per.

end_per  Ending period in the calculation.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The cumulative principal paid between the first period and the last
period. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function CUM_PRINC evaluates the cumulative principal paid between the
first period and the last period.

100 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

It is computed using the following:

where principali is computed from the function PRINC_PAYMENT for the ith
period.

Example

In this example, CUM_PRINC computes the total principal paid for the first
year of a 30-year $200,000 loan with an annual interest rate of 7.25%. The
payment is made at the end of each month.

PRINT, CUM_PRINC(0.0725 / 12, 12*30, 200000., 1, 12, 0)

 -1935.73

DEPRECIATION_DB Function
Evaluates the depreciation of an asset using the fixed-declining balance method.

Usage

result = DEPRECIATION_DB (cost, salvage, life, period, month)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

period  Period for which the depreciation is to be computed. period cannot be
less than or equal to 0, and cannot be greater than life +1.

month  Number of months in the first year. month cannot be greater than 12
or less than 1.

_end per

i
i start

principal
=
∑

DEPRECIATION_DB Function 101

Returned Value

result  The depreciation of an asset for a specified period using the fixed-
declining balance method. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_DB computes the depreciation of an asset for a
specified period using the fixed-declining balance method. Function
DEPRECIATION_DB varies depending on the specified value for the argument
period, see table below.

where

NOTE: rate is rounded to three decimal places.

Example

In this example, DEPRECIATION_DB computes the depreciation of an asset,
which costs $2,500 initially, a useful life of 3 periods and a salvage value of
$500, for each period.

ans = fltarr(4)

life = 3

Period Formula

period = 1

period = life

period other than 1
or life

cost rate
month¥ ¥

12

cost total depreciation from periods rate
- month- ¥ ¥b g 12

12

cost total depreciation from prior periods- ¥b g rate

rate
life

= - FHG
I
KJ
F
HG
I
KJ

1

1

salvage

cost

102 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

cost = 2500

salvage = 500

life = 3

month = 6

for period = 1, life+1 DO $

ans(period-1) = depreciation_db(cost, salvage, life, $
period, month)

PM, ans

 518.750

 822.219

 480.998

 140.692

DEPRECIATION_DDB Function
Evaluates the depreciation of an asset using the double-declining balance
method.

Usage

result = DEPRECIATION_DDB (cost, salvage, life, period, factor)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

period  Period for which the depreciation is to be computed. period cannot be
greater than life.

factor  Rate at which the balance declines. factor must be positive.

Returned Value

result  The depreciation of an asset using the double-declining balance
method for a period specified by the user. If no result can be computed, NaN is
returned.

DEPRECIATION_DDB Function 103

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_DDB computes the depreciation of an asset using
the double-declining balance method for a specified period.

It is computed using the following:

Example

In this example, DEPRECIATION_DDB computes the depreciation of an asset,
which costs $2,500 initially, lasts 24 periods and a salvage value of $500, for
each period.

ans = fltarr(24)

life = 24

cost = 2500

salvage = 500

factor = 2

FOR period = 1, life DO $

ans(period-1) = depreciation_ddb(cost, salvage, life, $
period, factor)

PM, ans

 208.333

 190.972

 175.058

 160.470

 147.097

 134.839

 123.603

 113.302

 103.860

 95.2054

cost salvage total depreciation from prior periods-

�
��

�
��� � factor

life

104 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

 87.2716

 79.9990

 73.3324

 67.2214

 61.6196

 56.4846

 51.7776

 47.4628

 22.0906

 0.00000

 0.00000

 0.00000

 0.00000

 0.00000

DEPRECIATION_SLN Function
Evaluates the depreciation of an asset using the straight-line method.

Usage

result = DEPRECIATION_SLN (cost, salvage, life)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

Returned Value

result  The straight line depreciation of an asset for its life. If no result can
be computed, NaN is returned.

DEPRECIATION_SYD Function 105

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_SLN computes the straight line depreciation of an
asset for its life.

It is computed using the following:

(cost-salvage)/life

Example

In this example, DEPRECIATION_SLN computes the depreciation of an asset,
which costs $2,500 initially, lasts 24 periods and a salvage value of $500.

PRINT, DEPRECIATION_SLN(2500, 500, 24)

 83.3333

DEPRECIATION_SYD Function
Evaluates the depreciation of an asset using the sum-of-years digits method.

Usage

result = DEPRECIATION_SYD (cost, salvage, life, period)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

period  Period for which the depreciation is to be computed. period cannot be
greater than life.

106 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The sum-of-years digits depreciation of an asset for a specified period.
If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_SYD computes the sum-of-years digits deprecia-
tion of an asset for a specified period.

It is computed using the following:

Example

In this example, DEPRECIATION_SYD computes the depreciation of an asset,
which costs $25,000 initially, lasts 15 years, and a salvage value of $5,000, for
the 14th year.

PRINT, DEPRECIATION_SYD(25000, 5000, 15, 14)

 333.333

DEPRECIATION_VDB Function
Evaluates the depreciation of an asset for any given period using the variable-
declining balance method.

Usage

result = DEPRECIATION_VDB (cost, salvage, life, start, end_per, factor, sln)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

()()
()

cost -
+

salvage period
life life1

2

� �

DEPRECIATION_VDB Function 107

life Number of periods over which the asset is being depreciated.

start  Starting period in the calculation. start cannot be less than 1; or greater
than end_per.

end_per  Final period for the calculation. end_per cannot be greater than life.

factor  Rate at which the balance declines. factor must be positive.

sln  If equal to zero, do not switch to straight-line depreciation even when the
depreciation is greater than the declining balance calculation.

Returned Value

result  The depreciation of an asset for any given period, including partial
periods, using the variable-declining balance method. If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_VDB computes the depreciation of an asset for any
given period using the variable-declining balance method using the following:

If sln = 0

If sln ≠ 0

where ddbi is computed from the function DEPRECIATION_DDB for the ith
period. k = the first period where straight-line depreciation is greater than

_

1

end per

i
i start

ddb
= +
∑

_

1

end per

i k

cost A salvage
A

end k=

− −+
− +∑

A ddbi
i start

k

=

= +

-

Ê
1

1

108 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

the depreciation using the double-declining balance method.

Example

In this example, DEPRECIATION_VDB computes the depreciation of an asset
between the 10th and 15th year, which costs $25,000 initially, lasts 15 years, and
has a salvage value of $5,000.

PRINT, DEPRECIATION_VDB(25000., 5000., 15, 10, 15, 2, 0)

 976.69

DOLLAR_DECIMAL Function
Converts a fractional price to a decimal price.

Usage

result = DOLLAR_DECIMAL (fractional_num, fraction)

Input Parameters

fractional_num  Whole number of dollars plus the numerator, as the frac-
tional part.

fraction  Denominator of the fractional dollar. fraction must be positive.

Returned Value

result  The dollar price expressed as a decimal number. The dollar price is
the whole number part of fractional-dollar plus its decimal part divided by frac-
tion. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DOLLAR_DECIMAL converts a dollar price, expressed as a fraction,
into a dollar price, expressed as a decimal number.

DOLLAR_FRACTION Function 109

It is computed using the following:

where idollar is the integer part of fractional_num, and ifrac is the integer part
of log(fraction).

Example

In this example, DOLLAR_DECIMAL converts $1 1/4 to $1.25.

PRINT, DOLLAR_DECIMAL(1.1, 4)

 1.25000

DOLLAR_FRACTION Function
Converts a decimal price to a fractional price.

Usage

result = DOLLAR_FRACTION (decimal_dollar, fraction)

Input Parameters

decimal_dollar  Dollar price expressed as a decimal number.

fraction  Denominator of the fractional dollar. fraction must be positive.

Returned Value

result  The dollar price expressed as a fraction. The numerator is the decimal
part of the returned value. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

idollar fractional_ num idollar
fraction

ifrac

+ − ∗
+10 10 5

110 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Discussion

Function DOLLAR_FRACTION converts a dollar price, expressed as a deci-
mal number, into a dollar price, expressed as a fractional price. If no result can
be computed, NaN is returned.

It can be found by solving the following

where idollar is the integer part of the decimal_dollar, and ifrac is the integer
part of log(fraction).

Example

In this example, DOLLAR_FRACTION converts $1.25 to $1 1/4.

PRINT, DOLLAR_FRACTION(1.25, 4)

 1.10000

EFFECTIVE_RATE Function
Evaluates the effective annual interest rate.

Usage

result = EFFECTIVE_RATE (nominal_rate, n_periods)

Input Parameters

nominal_rate  The interest rate as stated on the face of a security.

n_periods  Number of compounding periods per year.

Returned Value

result  The effective annual interest rate. If no result can be computed, NaN
is returned.

idollar +
-

+

decimal dollar idollar

fractionifrac

_

/10 11 6

FUTURE_VALUE Function 111

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function EFFECTIVE_RATE computes the continuously-compounded interest
rate equivalent to a given periodically-compounded interest rate. The nominal
interest rate is the periodically-compounded interest rate as stated on the face of
a security.

It can found by solving the following:

Example

In this example, EFFECTIVE_RATE computes the effective annual interest rate
of the nominal interest rate, 6%, compounded quarterly.

PRINT, EFFECTIVE_RATE(0.06, 4)

 0.0613635

FUTURE_VALUE Function
Evaluates the future value of an investment.

Usage

result = FUTURE_VALUE (rate, n_periods, payment, present_value, when)

Input Parameters

rate  Interest rate.

n_periods Total number of payment periods.

payment  Payment made in each period.

present_value  The current value of a stream of future payments, after
discounting the payments using some interest rate.

1 1+
�
��

�
�� -

nominal_ rate

n periods

n periods

_

_1 6

112 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The future value of an investment. If no result can be computed, NaN
is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function FUTURE_VALUE computes the future value of an investment. The
future value is the value, at some time in the future, of a current amount and a
stream of payments.

It can be found by solving the following:

Example

In this example, FUTURE_VALUE computes the value of $30,000 payment
made annually at the beginning of each year for the next 20 years with an
annual interest rate of 5%.

PRINT, FUTURE_VALUE(0.05, 20, -30000.00, -30000.00, 1)

 1.12118e+06

()()

()

If 0

If 0

=0

(1) 1
(1) 1+

=0

rate

rate

present_value payment n_periods future_value

n_periodsrate -n_periodspresent_value rate payment rate when
rate

future_value

=

≠

+ +

++ +   

+

FUTURE_VAL_SCHD Function 113

FUTURE_VAL_SCHD Function
Evaluates the future value of an initial principal taking into consideration a
schedule of compound interest rates.

Usage

result = FUTURE_VAL_SCHD (principal, schedule)

Input Parameters

principal  Principal or present value.

schedule  One-dimensional array of interest rates to apply.

Returned Value

result  The future value of an initial principal after applying a schedule of
compound interest rates. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function FUTURE_VAL_SCHD computes the future value of an initial
principal after applying a schedule of compound interest rates.

It is computed using the following with count = N_ELEMENTS (schedule):

where schedulei = interest rate at the ith period.

Example

In this example, FUTURE_VAL_SCHD computes the value of a $10,000
investment after 5 years with interest rates of 5%, 5.1%, 5.2%, 5.3% and 5.4%,
respectively.

principal schedulei
i

count

*

=

Ê � �
1

114 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

principal = 10000.0

schedule = [.050, .051, .052, .053, .054]

PRINT, FUTURE_VAL_SCHD(principal, schedule)

 12884.8

INT_PAYMENT Function
Evaluates the interest payment for an investment for a given period.

Usage

result = INT_PAYMENT (rate, period, n_periods, present_value, future_value,
when)

Input Parameters

rate  Interest rate.

period Payment period.

n_periods  Total number of periods.

present_value  The current value of a stream of future payments, after
discounting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The interest payment for an investment for a given period. If no result
can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

INT_RATE_ANNUITY Function 115

Discussion

Function INT_PAYMENT computes the interest payment for an investment for
a given period.

It is computed using the following:

Example

In this example, INT_PAYMENT computes the interest payment for the second
year of a 25-year $100,000 loan with an annual interest rate of 8%. The pay-
ment is made at the end of each period.

PRINT, INT_PAYMENT(0.08, 2, 25, 100000.00, 0.0, 0)

 -7890.57

INT_RATE_ANNUITY Function
Evaluates the interest rate per period of an annuity.

Usage

result = INT_RATE_ANNUITY (n_periods, payment, present_value,
future_value, when)

Input Parameters

n_periods  Total number of periods.

payment  Payment made each period.

present_value  The current value of a stream of future payments, after
discounting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and
a stream of payments.

() () ()1
_ 1 1 *

n_periods-1

n_periods-1

rate
present value rate payment rate when rate

rate

  +  + + +     

116 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The interest rate per period of an annuity. If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the interest rate.

Highest  If present, the value is used as the maximum value of the interest
rate allowed.

Discussion

Function INT_RATE_ANNUITY computes the interest rate per period of an
annuity. An annuity is a security that pays a fixed amount at equally spaced
intervals.

INT_RATE_RETURN Function 117

It can be found by solving the following:

Example

In this example, INT_RATE_ANNUITY computes the interest rate of a $20,000
loan that requires 70 payments of $350 to pay off the loan.

PRINT, 12*INT_RATE_ANNUITY(70, -350, 20000, 0, 1)

 0.0734513

INT_RATE_RETURN Function
Evaluates the internal rate of return for a schedule of cash flows.

Usage

result = INT_RATE_RETURN (values)

Input Parameters

values  One-dimensional array of cash flows which occur at regular inter-
vals, which includes the initial investment.

Returned Value

result  The internal rate of return for a schedule of cash flows. If no result
can be computed, NaN is returned.

()()

() () () _
_

If 0

_ _ _ 0

If 0

1 1
_ 1 1

_ 0

n periods
n periods

rate

present value payment n periods future value

rate

rate
present value rate payment rate when

rate
future value

=
+ + =

≠

+ −
+ + +  

+ =

118 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the internal rate of
return.

Highest  If present, the value is used as the maximum value of the internal
rate of return allowed.

Discussion

Function INT_RATE_RETURN computes the internal rate of return for a
schedule of cash flows. The internal rate of return is the interest rate such that a
stream of payments has a net present value of zero.

It is found by solving the following with count = N_ELEMENTS (values):

where valuei = the ith cash flow, rate is the internal rate of return.

Example

In this example, INT_RATE_RETURN computes the internal rate of return for
nine cash flows, $-800, $800, $800, $600, $600, $800, $800, $700 and $3,000,
with an initial investment of $4,500.

values = [-4500., -800., 800., 800., 600., $

 600., 800., 800., 700., 3000.]

PRINT, INT_RATE_RETURN(values)

 0.0720820

INT_RATE_SCHD Function
Evaluates the internal rate of return for a schedule of cash flows. It is not neces-
sary that the cash flows be periodic.

Usage

result = INT_RATE_SCHD (values, dates)

0
11

=

+
=

Ê
value

rate

i
i

i

count

� �

INT_RATE_SCHD Function 119

Input Parameters

values  One-dimensional array of cash flows, which includes the initial
investment.

dates  One-dimensional array of dates cash flows are made. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

Returned Value

result  The internal rate of return for a schedule of cash flows that is not nec-
essarily periodic. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the internal rate of
return.

Highest  If present, the value is used as the maximum value of the internal
rate of return allowed.

Discussion

Function INT_RATE_SCHD computes the internal rate of return for a schedule
of cash flows that is not necessarily periodic. The internal rate such that the
stream of payments has a net present value of zero.

It can be found by solving the following with count = N_ELEMENTS (values):

In the equation above, di represents the ith payment date. d1 represents the 1st
payment date. valuei represents the ith cash flow. rate is the internal rate of
return.

0

1
1

3651

=

+

-

=

Ê
value

rate

i
d d

i

count

i� �

120 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Example

In this example, INT_RATE_SCHD computes the internal rate of return for nine
cash flows, $-800, $800, $800, $600, $600, $800, $800, $700 and $3,000, with
an initial investment of $4,500.

years = [1998, 1998, 1999, 2000, 2001, 2002, 2003, 2004, $
 2005, 2006]

months = [1, 10, 5, 5, 6, 7, 8, 9, 10, 11]

days = [1, 1, 5, 5, 1, 1, 30, 15, 15, 1]

dates = VAR_TO_DT(years, months, days)

v = [-4500., -800, 800, 800., 600., 600, 800, 800, 700, 3000]

PRINT, INT_RATE_SCHD(v, dates)

 0.0769003

MOD_INTERN_RATE Function
Evaluates the modified internal rate of return for a schedule of periodic cash
flows.

Usage

result = MOD_INTERN_RATE (values, finance_rate, reinvest_rate)

Input Parameters

values  One-dimensional array of cash flows.

finance_rate  Interest paid on the money borrowed.

reinvest_rate  Interest rate received on the cash flows.

Returned Value

result  The modified internal rate of return for a schedule of periodic cash
flows. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

NET_PRES_VALUE Function 121

Discussion

Function MOD_INTERN_RATE computes the modified internal rate of return
for a schedule of periodic cash flows. The modified internal rate of return dif-
fers from the ordinary internal rate of return in assuming that the cash flows are
reinvested at the cost of capital, not at the internal rate of return.

It also eliminates the multiple rates of return problem.

It is computed using the following:

where pnpv is calculated from the function NET_PRES_VALUE for positive
values in values using reinvest_rate, and where nnpv is calculated from the
function NET_PRES_VALUE for negative values in values using finance_rate.

Example

In this example, MOD_INTERN_RATE computes the modified internal rate of
return for an investment of $4,500 with cash flows of $-800, $800, $800, $600,
$600, $800, $800, $700 and $3,000 for 9 years.

value = [-4500., -800., 800., 800., 600., 600., 800., $

 800., 700., 3000.]

finance_rate = .08

reinvest_rate = .055

PRINT, MOD_INTERN_RATE(value, finance_rate, reinvest_rate)

 0.0665972

NET_PRES_VALUE Function
Evaluates the net present value of a stream of unequal periodic cash flows,
which are subject to a given discount rate.

Usage

result = NET_PRES_VALUE (rate, values)

- +

+

	

��

�

��

�
���

���

�
���

���
-

-pnpv reinvest_ rate

finance_ rate

� �� �
� �� �

1

1
1

1

1n periods n periods

nnpv

_ _

122 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Parameters

rate  Interest rate per period.

values  One-dimensional array of equally-spaced cash flows.

Returned Value

result  The net present value of an investment. If no result can be computed,
NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function NET_PRES_VALUE computes the net present value of an invest-
ment. Net present value is the current value of a stream of payments, after
discounting the payments using some interest rate.

It is found by solving the following with count = N_ELEMENTS (values):

where valuei = the ith cash flow.

Example

In this example, NET_PRES_VALUE computes the net present value of a $10
million prize paid in 20 years ($50,000 per year) with an annual interest rate of
6%.

rate = 0.06

value = FLTARR(20)

value(*) = 500000.

PRINT, NET_PRES_VALUE(rate, value)

 5.73496e+06

value

rate

i
i

i

count

11 +
=

Ê � �

NOMINAL_RATE Function 123

NOMINAL_RATE Function
Evaluates the nominal annual interest rate.

Usage

result = NOMINAL_RATE (effective_rate, n_periods)

Input Parameters

effective_rate  The amount of interest that would be charged if the interest
was paid in a single lump sum at the end of the loan.

n_periods  Number of compounding periods per year.

Returned Value

result  The nominal annual interest rate. If no result can be computed, NaN
is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function NOMINAL_RATE computes the nominal annual interest rate. The
nominal interest rate is the interest rate as stated on the face of a security.

It is computed using the following:

Example

In this example, NOMINAL_RATE computes the nominal annual interest rate
of the effective interest rate, 6.14%, compounded quarterly.

PRINT, NOMINAL_RATE(0.0614, 4)

1 1

1

+ -

	

��

�

��effective rate n_ periods_ *� � n_ periods

124 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

 0.0600348

NUM_PERIODS Function
Evaluates the number of periods for an investment for which periodic and con-
stant payments are made and the interest rate is constant.

Usage

result = NUM_PERIODS (rate, payment, present_value, future_value, when)

Input Parameters

rate  Interest rate on the investment.

payment  Payment made on the investment.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The number of periods for an investment.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function NUM_PERIODS computes the number of periods for an investment
based on periodic, constant payment and a constant interest rate.

PAYMENT Function 125

It can be found by solving the following:

Example

In this example, NUM_PERIODS computes the number of periods needed to
pay off a $20,000 loan with a monthly payment of $350 and an annual interest
rate of 7.25%. The payment is made at the beginning of each period.

PRINT, NUM_PERIODS(0.0725 / 12, -350., 20000., 0., 1)

 70

PAYMENT Function
Evaluates the periodic payment for an investment.

Usage

result = PAYMENT (rate, n_periods, present_value, future_value, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of periods.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

()()

()

If 0

If 0

=0

(1) 1
(1) 1+

=0

rate

rate

present_value payment n_periods future_value

n_periodsrate -n_periodspresent_value rate payment rate when
rate

future_value

=

≠

+ +

++ +   

+

126 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The periodic payment for an investment. If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PAYMENT computes the periodic payment for an investment.

It can be found by solving the following:

Example

In this example, PAYMENT computes the periodic payment of a 25-year
$100,000 loan with an annual interest rate of 8%. The payment is made at the
end of each period.

PRINT, PAYMENT(0.08, 25, 100000., 0., 0)

 -9367.88

()()

()

If 0

If 0

=0

(1) 1
(1) 1+

=0

rate

rate

present_value payment n_periods future_value

n_periodsrate -n_periodspresent_value rate payment rate when
rate

future_value

=

≠

+ +

++ +   

+

PRESENT_VALUE Function 127

PRESENT_VALUE Function
Evaluates the net present value of a stream of equal periodic cash flows, which
are subject to a given discount rate..

Usage

result = PRESENT_VALUE (rate, n_periods, payment, future_value, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of periods.

payment  Payment made in each period.

future_value  The value, at some time in the future, of a current amount and
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result  The present value of an investment. If no result can be computed,
NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

128 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Discussion

Function PRESENT_VALUE computes the present value of an investment.

Example

In this example, PRESENT_VALUE computes the present value of 20 pay-
ments of $500,000 per payment ($10 million) with an annual interest rate of
6%. The payment is made at the end of each period.

PRINT, PRESENT_VALUE(0.06, 20, 500000., 0., 0)

-5.73496e+06

PRES_VAL_SCHD Function
Evaluates the present value for a schedule of cash flows. It is not necessary that
the cash flows be periodic.

Usage

result = PRES_VAL_SCHD (rate, values, dates)

Input Parameters

rate  Interest rate.

values  One-dimensional array of cash flows.

()()

()

If 0

If 0

=0

(1) 1
(1) 1+

=0

rate

rate

present_value payment n_periods future_value

n_periodsrate -n_periodspresent_value rate payment rate when
rate

future_value

=

≠

+ +

++ +   

+

PRES_VAL_SCHD Function 129

dates  One-dimensional array of dates cash flows are made. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

Returned Value

result  The present value for a schedule of cash flows that is not necessarily
periodic. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRES_VAL_SCHD computes the present value for a schedule of cash
flows that is not necessarily periodic.

It can be found by solving the following with count = N_ELEMENTS (values):

In the equation above, di represents the ith payment date, d1 represents the 1st
payment date, and valueI represents the ith cash flow.

Example

In this example, PRES_VAL_SCHD computes the present value of 3 payments,
$1,000, $2,000 and $1,000, with an interest rate of 5% made on January 3,
1997, January 3, 1999 and January 3, 2000.

rate = 0.05

values = [1000.0, 2000.0, 1000.0]

dates = VAR_TO_DT([1997, 1999, 2000], [1, 1, 1], [3, 3, 3])

PRINT, PRES_VAL_SCHD(rate, values, dates)

 3677.90

value

rate

i
d d

i

count

i1 1 365
1 +

-

=

Ê � �1 6/

130 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

PRINC_PAYMENT Function
Evaluates the payment on the principal for a specified period.

Usage

result = PRINC_PAYMENT (rate, period, n_periods, present_value,
future_value, when)

Input Parameters

rate  Interest rate.

period  Payment period.

n_periods  Total number of periods.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end
of period or 1 for at the beginning of period.

Returned Value

result The payment on the principal for a given period. If no result can be
computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRINC_PAYMENT computes the payment on the principal for a given
period.

It is computed using the following:

payment interesti i-

ACCR_INT_MAT Function 131

where paymenti is computed from the function PAYMENT for the ith period,
interesti is calculated from the function INT_PAYMENT for the ith period.

Example

In this example, PRINC_PAYMENT computes the principal paid for the first
year on a 30-year $100,000 loan with an annual interest rate of 8%. The pay-
ment is made at the end of each year.

PRINT, PRINC_PAYMENT(0.08, 1, 30, 100000., 0., 0)

 -882.742

ACCR_INT_MAT Function
Evaluates the interest which has accrued on a security that pays interest at
maturity.

Usage

result = ACCR_INT_MAT (issue, maturity, coupon_rate, par_value, basis)

Input Parameters

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE
User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the
coupon rate.

par_value  Nominal or face value of the security used to calculate interest
payments.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

132 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The interest which has accrued on a security that pays interest at
maturity. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function ACCR_INT_MAT computes the accrued interest for a security that
pays interest at maturity:

In the above equation, A represents the number of days starting at issue date to
maturity date and D represents the annual basis.

Example

In this example, ACCR_INT_MAT computes the accrued interest for a security
that pays interest at maturity using the US (NASD) 30/360 day count method.
The security has a par value of $1,000, the issue date of October 1, 2000, the
maturity date of November 3, 2000, and a coupon rate of 6%.

basis PDay count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

()()_
A

par value rate
D

 
  

ACCR_INT_PER Function 133

issue = VAR_TO_DT(2000, 10, 1)

maturity = VAR_TO_DT(2000, 11, 3)

rate = .06

par = 1000.

basis = 1

PRINT, ACCR_INT_MAT(issue, maturity, rate, par, basis)

 5.33333

ACCR_INT_PER Function
Evaluates the interest which has accrued on a security that pays interest
periodically.

Usage

result = ACCR_INT_PER (issue, first_coupon, settlement, coupon_rate,
par_value, frequency, basis)

Input Parameters

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE
User’s Guide.

first_coupon  First date on which an interest payment is due on the security
(e.g. coupon date). For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the
coupon rate.

par_value  Nominal or face value of the security used to calculate interest
payments.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

134 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The accrued interest for a security that pays periodic interest. If no
result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function ACCR_INT_PER computes the accrued interest for a security that
pays periodic interest.

In the equation below, Ai represents the number days which have accrued for
the ith quasi-coupon period within the odd period. (The quasi-coupon periods
are periods obtained by extending the series of equal payment periods to before
or after the actual payment periods.) NC represents the number of quasi-coupon

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis PDay count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

BOND_EQV_YIELD Function 135

periods within the odd period, rounded to the next highest integer. (The odd
period is a period between payments that differs from the usual equally spaced
periods at which payments are made.) NLi represents the length of the normal
ith quasi-coupon period within the odd period. NLI is expressed in days.

Function ACCR_INT_PER can be found by solving the following:

Example

In this example, ACCR_INT_PER computes the accrued interest for a security
that pays periodic interest using the US (NASD) 30/360 day count method. The
security has a par value of $1,000, the issue date of October 1, 1999, the settle-
ment date of November 3, 1999, the first coupon date of March 31, 2000, and a
coupon rate of 6%.

issue = VAR_TO_DT(1999, 10, 1)

first_coupon = VAR_TO_DT(2000, 3, 31)

settlement = VAR_TO_DT(1999, 11, 3)

rate = .06

par = 1000.

frequency = 2

basis = 1

PRINT, ACCR_INT_PER(issue, first_coupon, settlement, $
rate, par, frequency, basis)

 5.33333

BOND_EQV_YIELD Function
Evaluates the bond-equivalent yield of a Treasury bill.

Usage

result = BOND_EQV_YIELD (settlement, maturity, discount_rate)

par value
rate

frequency

A

NL
i

ii

NC

_� � �
��

�
��

	

��

�

��

�
���

�
���

=

Ê
1

136 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

discount_rate  The interest rate implied when a security is sold for less than
its value at maturity in lieu of interest payments.

Returned Value

result  The bond-equivalent yield of a Treasury bill. If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function BOND_EQV_YIELD computes the bond-equivalent yield for a Trea-
sury bill.

It is computed using the following:

if DSM <=182

otherwise,

In the above equation, DSM represents the number of days starting at settlement
date to maturity date.

365

360

*

- *

discount rate

discount rate DSM

_

_

- +
�
��

�
�� - * -

�
��

�
��*

*

* -

-

DSM DSM DSM discount rate DSM

discount rate DSM
DSM

365 365

2
2

365
1

360

365
0 5

_

_

.

CONVEXITY Function 137

Example

In this example, BOND_EQV_YIELD computes the bond-equivalent yield for a
Treasury bill with the settlement date of July 1, 1999, the maturity date of July
1, 2000, and discount rate of 5% at the issue date.

PRINT, BOND_EQV_YIELD(settlement, maturity, discount)

 0.052857

CONVEXITY Function
Evaluates the convexity for a security.

Usage

result = CONVEXITY (settlement, maturity, coupon_rate, yield, frequency,
basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the
coupon rate.

yield  Annual yield of the security.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

138 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The convexity for a security. If no result can be computed, NaN is
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function CONVEXITY computes the convexity for a security. Convexity is the
sensitivity of the duration of a security to changes in yield.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

COUPON_DAYS Function 139

It is computed using the following:

where n is calculated from the function COUPON_NUM and

.

Example

In this example, CONVEXITY computes the convexity for a security with the
settlement date of July 1, 1990, and maturity date of July 1, 2000, using the
Actual/365 day count method.

settlement = VAR_TO_DT(1990, 7, 1)

maturity = VAR_TO_DT(2000, 7, 1)

coupon = .075

yield = .09

frequency = 2

basis = 3

PRINT, CONVEXITY(settlement, maturity, $
coupon, yield, frequency, basis)

 59.4050

COUPON_DAYS Function
Evaluates the number of days in the coupon period containing the settlement
date.

Usage

result = COUPON_DAYS (settlement, maturity, frequency, basis)

1
1 12

1

1

q frequency
t t

coupon rate

frequency
q n n q

coupon rate

frequency
q q

t

n
t n

t

t

n
n

∗
+ �

��
�
�� + +

���
���

�
��

�
�� +

�
��

�
��

=

− −

−

=

−

∑

∑
� � � � � �_

_

q
yield

frequency
= +1

140 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The number of days in the coupon period which contains the settle-
ment date. If no result can be computed, NaN is returned.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

COUPON_NUM Function 141

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_DAYS computes the number of days in the coupon period
that contains the settlement date. For a good discussion on day count basis, see
SIA Standard Securities Calculation Methods 1993, vol. 1, pages 17-35.

Example

In this example, COUPON_DAYS computes the number of days in the coupon
period of a bond with the settlement date of November 11, 1996, and the matu-
rity date of March 1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

PRINT, COUPON_DAYS(settlement, maturity, frequency, basis)

 182.500

COUPON_NUM Function
Evaluates the number of coupons payable between the settlement date and the
maturity date.

Usage

result = COUPON_NUM (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

142 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The number of coupons payable between the settlement date and the
maturity date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_NUM computes the number of coupons payable between
the settlement date and the maturity date. For a good discussion on day count
basis, see SIA Standard Securities Calculation Methods 1993, vol. 1,
pages 17-35.

Example

In this example, COUPON_NUM computes the number of coupons payable
with the settlement date of November 11, 1996, and the maturity date of March
1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

SETTLEMENT_DB Function 143

PRINT, COUPON_NUM(settlement, maturity, frequency, basis)

 25

SETTLEMENT_DB Function
Evaluates the number of days starting with the beginning of the coupon period
and ending with the settlement date.

Usage

result = SETTLEMENT_DB (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

144 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The number of days in the period starting with the beginning of the
coupon period and ending with the settlement date.

Input Keywords

double  If present and nonzero, double precision is used.

Discussion

Function SETTLEMENT_DB computes the number of days from the begin-
ning of the coupon period to the settlement date. For a good discussion on day
count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1,
pages 17-35.

Example

In this example, SETTLEMENT_DB computes the number of days from the
beginning of the coupon period to November 11, 1996, of a bond with the
maturity date of March 1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

PRINT, SETTLEMENT_DB(settlement, maturity, frequency, basis)

 71

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

basis Day count basis

COUPON_DNC Function 145

COUPON_DNC Function
Evaluates the number of days starting with the settlement date and ending with
the next coupon date.

Usage

result = COUPON_DNC (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

146 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The number of days starting with the settlement date and ending with
the next coupon date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_DNC computes the number of days from the settlement
date to the next coupon date. For a good discussion on day count basis, see SIA
Standard Securities Calculation Methods 1993, vol. 1, pp. 17-35.

Example

In this example, COUPON_DNC computes the number of days from Novem-
ber 11, 1996, to the next coupon date of a bond with the maturity date of March
1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

PRINT, COUPON_DNC(settlement, maturity, frequency, basis)

 110

3 Actual/365

4 European 30/360

basis Day count basis

DEPREC_AMORDEGRC Function 147

DEPREC_AMORDEGRC Function
Evaluates the depreciation for each accounting period. During the evaluation of
the function a depreciation coefficient based on the asset life is applied.

Usage

result = DEPREC_AMORDEGRC (cost, issue, first_period, salvage, period,
rate, basis)

Input Parameters

cost Initial value of the asset.

issue The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE
User’s Guide.

first_period Date of the end of the first period. For a more detailed discussion
on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE User’s
Guide.

salvage  The value of an asset at the end of its depreciation period.

period  Depreciation for the accounting period to be computed.

rate  Depreciation rate.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

148 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The depreciation for each accounting period. If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPREC_AMORDEGRC computes the depreciation for each
accounting period. This function is similar to DEPREC_AMORLINC. However,
in this function a depreciation coefficient based on the asset life is applied dur-
ing the evaluation of the function.

Example

In this example, DEPREC_AMORDEGRC computes the depreciation for the
second accounting period using the US (NASD) 30/360 day count method. The
security has the issue date of November 1, 1999, end of first period of Novem-
ber 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

issue = VAR_TO_DT(1999, 11, 1)

first_period = VAR_TO_DT(2000, 11, 30)

cost = 2400.

salvage = 300.

period = 2

rate = .15

basis = 1

PRINT, DEPREC_AMORDEGRC(cost, issue, first_period, $
salvage, period, rate, basis

 335.000

DEPREC_AMORLINC Function
Evaluates the depreciation for each accounting period. This function is similar
to DEPREC_AMORDEGRC, except that DEPREC_AMORDEGRC has a

DEPREC_AMORLINC Function 149

depreciation coefficient that is applied during the evaluation that is based on the
asset life.

Usage

result = DEPREC_AMORLINC (cost, issue, first_period, salvage, period, rate,
basis)

Input Parameters

cost  Initial value of the asset.

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE
User’s Guide.

first_period Date of the end of the first period. For a more detailed discussion
on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE User’s
Guide.

salavge  The value of an asset at the end of its depreciation period.

period Depreciation for the accounting period to be computed.

rate  Depreciation rate.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The depreciation for each accounting period. If no result can be com-
puted, NaN is returned.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

150 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPREC_AMORLINC computes the depreciation for each accounting
period.

Example

In this example, DEPREC_AMORLINC computes the depreciation for the sec-
ond accounting period using the US (NASD) 30/360 day count method. The
security has the issue date of November 1, 1999, end of first period of Novem-
ber 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

issue = VAR_TO_DT(1999, 11, 1)

first_period = VAR_TO_DT(2000, 11, 30)

cost = 2400.

salvage = 300.

period = 2

rate = .15

basis = 1

PRINT, DEPREC_AMORLINC(cost, issue, first_period, $
salvage, period, rate, basis)

 360.000

DISCOUNT_PR Function
Evaluates the price of a security sold for less than its face value.

Usage

result = DISCOUNT_PR (settlement, maturity, discount_rate, redemption,
basis)

DISCOUNT_PR Function 151

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

discount_rate  The interest rate implied when a security is sold for less than
its value at maturity in lieu of interest payments.

redemption  Redemption value per $100 face value of the security.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The price per face value for a discounted security. If no result can be
computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DISCOUNT_PR computes the price per $100 face value of a dis-
counted security.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

152 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

It is computed using the following:

In the equation above, DSM represents the number of days starting at the settle-
ment date and ending with the maturity date. B represents the number of days
in a year based on the annual basis.

Example

In this example, DISCOUNT_PR computes the price of the discounted bond
with the settlement date of July 1, 2000, and maturity date of July 1, 2001, at
the discount rate of 5% using the US (NASD) 30/360 day count method.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2001, 7, 1)

discount = .05

redemption = 100.

basis = 1

PRINT, DISCOUNT_PR(settlement, maturity, discount, $
redemption, basis

 95.0000

DISCOUNT_RT Function
Evaluates the interest rate implied when a security is sold for less than its value
at maturity in lieu of interest payments.

Usage

result = DISCOUNT_RT (settlement, maturity, price, redemption, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

redemption discount rate redemption
DSM

B
-

�
��

�
��

	

�

�

�_� �

DISCOUNT_RT Function 153

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

price  Price per $100 face value of the security.

redemption  Redemption value per $100 face value of the security.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The discount rate for a security. If no result can be computed, NaN is
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DISCOUNT_RT computes the discount rate for a security. The dis-
count rate is the interest rate implied when a security is sold for less than its
value at maturity in lieu of interest payments.

It is computed using the following:

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption price

price

B

DSM

-
�
��

�
��
�
��

�
��

154 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

In the equation above, B represents the number of days in a year based on the
annual basis and DSM represents the number of days starting with the settle-
ment date and ending with the maturity date.

Example

In this example, DISCOUNT_RT computes the discount rate of a security
which is selling at $97.975 with the settlement date of February 15, 2000, and
maturity date of June 10, 2000, using the Actual/365 day count method.

settlement = VAR_TO_DT(2000, 2, 15)

maturity = VAR_TO_DT(2000, 6, 10)

price = 97.975

redemption = 100.

basis = 3

PRINT, DISCOUNT_RT(settlement, maturity, price, $
redemption, basis)

 0.0637177

DISCOUNT_YLD Function
Evaluates the annual yield of a discounted security.

Usage

result = DISCOUNT_YLD (settlement, maturity, price, redemption, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

price  Price per $100 face value of the security.

redemption  Redemption value per $100 face value of the security.

DISCOUNT_YLD Function 155

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The annual yield for a discounted security. If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DISCOUNT_YLD computes the annual yield for a discounted
security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the
annual basis, and DSM represents the number of days starting with the settle-
ment date and ending with the maturity date.

Example

In this example, DISCOUNT_YLD computes the annual yield for a discounted
security which is selling at $95.40663 with the settlement date of July 1, 1995,

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption price

price

B

DSM

-
�
��

�
��
�
��

�
��

156 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

and maturity date of July 1, 2005, using the US (NASD) 30/360 day count
method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

price = 95.40663

redemption = 105.

basis = 1

PRINT, DISCOUNT_YLD(settlement, maturity, price, redemption$
basis)

0.0100552

DURATION Function
Evaluates the annual duration of a security where the security has periodic inter-
est payments.

Usage

result = DURATION (settlement, maturity, coupon_rate, yield, frequency,
basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the
coupon rate.

yield  Annual yield of the security.

frequency Frequency of the interest payments. It should be either 1, 2 or 4.

DURATION Function 157

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The annual duration of a security with periodic interest payments. If
no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DURATION computes the Maccaluey’s duration of a security with
periodic interest payments. The Maccaluey’s duration is the weighted-average
time to the payments, where the weights are the present value of the payments.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

158 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

It is computed using the following:

In the equation above, DSC represents the number of days starting with the set-
tlement date and ending with the next coupon date. E represents the number of
days within the coupon period. N represents the number of coupons payable
from the settlement date to the maturity date. freq represents the frequency of
the coupon payments annually.

Example

In this example, DURATION computes the annual duration of a security with
the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the
Actual/365 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

coupon = .075

yield = .09

frequency = 2

basis = 3

PRINT, DURATION(settlement, maturity, coupon, $
yield, frequency, basis)

 7.04195

DSC

E

yield

freq

coupon rate

freq
yield

freq

k
DSC

E

yield

freq

coupon rate

freq
yield

freq

N
DSC

E k

N

k
DSC

E

N
DSC

E k

N

k
DSC

E

*

+
�
��

�
��

+
*

* +
�
��

�
��

�

�

������

�

�

������
* - +
�
��

�
��

�

�

������

�

�

������

+
�
��

�
��

+
*

* +
�
��

�
��

�

�

������

�

�

������

�

�

����� - +
�
��

�
�� =

- +
�
��

�
��

- +
=

- +

Ê

Ê

100

1

100

1

1

100

1

100

1

1 1 1

1 1 1

_

_

���������

�

�

��������������

*
1

freq

INT_RATE_SEC Function 159

INT_RATE_SEC Function
Evaluates the interest rate of a fully invested security.

Usage

result = INT_RATE_SEC (settlement, maturity, investment, redemption, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

investment  The total amount one has invested in the security.

redemption  Amount to be received at maturity.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The interest rate for a fully invested security. If no result can be com-
puted, NaN is returned.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

160 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function INT_RATE_SEC computes the interest rate for a fully invested
security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the
annual basis, and DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date.

Example

In this example, INT_RATE_SEC computes the interest rate of a $7,000 invest-
ment with the settlement date of July 1, 1995, and maturity date of July 1,
2005, using the Actual/365 day count method. The total amount received at the
end of the investment is $10,000.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

investment = 7000.

redemption = 10000.

basis = 3

PRINT, INT_RATE_SEC(settlement, maturity, investment,$
redemption, basis)

 0.0428219

redemption investment

investment

B

DSM

-�
��

�
��
�
��

�
��

DURATION_MAC Function 161

DURATION_MAC Function
Evaluates the modified Macauley duration of a security.

Usage

result = DURATION_MAC (settlement, maturity, coupon_rate, yield,
frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the
coupon rate.

yield  Annual yield of the security.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

162 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The modified Macauley duration of a security is returned. The secu-
rity has an assumed par value of $100. If no result can be computed, NaN is
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DURATION_MAC computes the modified Macauley duration for a
security with an assumed par value of $100.

It is computed using the following:

where duration is calculated from the function DURATION.

Example

In this example, DURATION_MAC computes the modified Macauley duration
of a security with the settlement date of July 1, 1995, and maturity date of July
1, 2005, using the Actual/365 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

coupon = .075

yield = .09

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

basis Day count basis

duration

yield

frequency
1

COUPON_NCD Function 163

frequency = 2

basis = 3

PRINT, DURATION_MAC(settlement, maturity, $
coupon, yield, frequency, basis)

 6.73871

COUPON_NCD Function
Evaluates the first coupon date which follows the settlement date.

Usage

result = COUPON_NCD (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

164 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The first coupon date which follows the settlement date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_NCD computes the next coupon date after the settlement
date. For a good discussion on day count basis, see SIA Standard Securities
Calculation Methods 1993, vol 1, pages 17-35.

Example

In this example, COUPON_NCD computes the next coupon date of a bond with
the settlement date of November 11, 1996, and the maturity date of March 1,
2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

ans = COUPON_NCD(settlement, maturity, frequency, basis)

DT_TO_STR, ans, d, Date_Fmt=4

01/March/1997

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

COUPON_PCD Function 165

COUPON_PCD Function
Evaluates the coupon date which immediately precedes the settlement date.

Usage

result = COUPON_PCD (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

fequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

166 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The coupon date which immediately precedes the settlement date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_PCD computes the coupon date which immediately pre-
cedes the settlement date. For a good discussion on day count basis, see
SIA Standard Securities Calculation Methods 1993, vol 1, pages 17-35.

Example

In this example, COUPON_PCD computes the previous coupon date of a bond
with the settlement date of November 11, 1986, and the maturity date of March
1, 1999, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

ans = COUPON_PCD(settlement, maturity, frequency, basis)

DT_TO_STR, ans, d, Date_Fmt=4

PRINT, d

01/September/1996

4 European 30/360

basis Day count basis

PRICE_PERIODIC Function 167

PRICE_PERIODIC Function
Evaluates the price, per $100 face value, of a security that pays periodic
interest.

Usage

result = PRICE_PERIODIC (settlement, maturity, rate, yield, redemption,
frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid.

rate  Annual interest rate set forth on the face of the security; the coupon
rate.

yield  Annual yield of the security.

redemption  Redemption value per $100 face value of the security.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

168 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Returned Value

result  The price per $100 face value of a security that pays periodic
interest. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRICE_PERIODIC computes the price per $100 face value of a
security that pays periodic interest.

It is computed using the following:

In the above equation, DSC represents the number of days in the period
starting with the settlement date and ending with the next coupon date. E
represents the number of days within the coupon period. N represents the
number of coupons payable in the timeframe from the settlement date to the
redemption date. A represents the number of days in the timeframe starting
with the beginning of coupon period and ending with the settlement date.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption

yield

frequency

rate

frequency

yield

frequency

rate

frequency

A

EN
DSC

E
k

DSC

Ek

N

1

100

1

100
1 11

+

�
��

�
��

�

�

������

�

�

������
+

*

+
�
��

�
��

�

�

						

�

������

- * *
�
��

�
��

- +
�
��

�
��

- +
�
��

�
��=

Ê

PRICE_MATURITY Function 169

Example

In this example, PRICE_PERIODIC computes the price of a bond that pays
coupon every six months with the settlement of July 1, 1995, the maturity date
of July 1, 2005, a annual rate of 6%, annual yield of 7% and redemption value
of $105 using the US (NASD) 30/360 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

rate = .06

yield = .07

redemption = 105.

frequency = 2

basis = 1

PRINT, PRICE_PERIODIC(settlement, maturity, rate, yield, $
redemption, frequency, basis)

 95.4067

PRICE_MATURITY Function
Evaluates the price, per $100 face value, of a security that pays interest at
maturity.

Usage

result = PRICE_MATURITY (settlement, maturity, issue, rate, yield, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE
User’s Guide.

170 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

rate  Annual interest rate set forth on the face of the security; the coupon
rate.

yield  Annual yield of the security.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The price per $100 face value of a security that pays interest at matu-
rity. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRICE_MATURITY computes the price per $100 face value of a
security that pays interest at maturity.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the
annual basis. DSM represents the number of days in the period starting with the
settlement date and ending with the maturity date. DIM represents the number

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

100 100

1
100

+ * *
�
��

�
��

+ *
�
��

�
��

�

�

				

�

����
- * *
�
��

�
��

DIM

B
rate

DSM
B

yield

A

B
rate

MATURITY_REC Function 171

of days in the period starting with the issue date and ending with the maturity
date. A represents the number of days in the period starting with the issue date
and ending with the settlement date.

Example

In this example, PRICE_MATURITY computes the price at maturity of a secu-
rity with the settlement date of August 1, 2000, maturity date of July 1, 2001
and issue date of July 1, 2000, using the US (NASD) 30/360 day count method.
The security has 5% annual yield and 5% interest rate at the date of issue.

settlement = VAR_TO_DT(2000, 8, 1)

maturity = VAR_TO_DT(2001, 7, 1)

issue = VAR_TO_DT(2000, 7, 1)

rate = .05

yield = .05

basis = 1

PRINT, PRICE_MATURITY(settlement, maturity, issue, $
rate, yield, basis)

 99.9817

MATURITY_REC Function
Evaluates the amount one receives when a fully invested security reaches the
maturity date.

Usage

result = MATURITY_REC (settlement, maturity, investment, discount_rate,
basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

172 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

investment  The total amount one has invested in the security.

discount_rate  The interest rate implied when a security is sold for less than
its value at maturity in lieu of interest payments.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The amount one receives when a fully invested security reaches its
maturity date. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function MATURITY_REC computes the amount received at maturity for a
fully invested security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the
annual basis, and DIM represents the number of days in the period starting with
the issue date and ending with the maturity date.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

investment

discount rate
DIM

B
1- *

�
��

�
��_

TBILL_PRICE Function 173

Example

In this example, MATURITY_REC computes the amount received of a $7,000
investment with the settlement date of July 1, 1995, maturity date of July 1,
2005 and discount rate of 6%, using the Actual/365 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

investment = 7000.

discount = .06

basis = 3

PRINT, MATURITY_REC(settlement, maturity, investment,$
discount, basis)

 17521.6

TBILL_PRICE Function
Evaluates the price per $100 face value of a Treasury bill.

Usage

result = TBILL_PRICE (settlement, maturity, discount_rate)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

discount_rate  The interest rate implied when a security is sold for less than
its value at maturity in lieu of interest payments.

Returned Value

result  The price per $100 face value of a Treasury bill. If no result can be
computed, NaN is returned.

174 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function TBILL_PRICE computes the price per $100 face value for a Treasury
bill.

It is computed using the following:

In the equation above, DSM represents the number of days in the period starting
with the settlement date and ending with the maturity date (any maturity date
that is more than one calendar year after the settlement date is excluded).

Example

In this example, TBILL_PRICE computes the price for a Treasury bill with the
settlement date of July 1, 2000, the maturity date of July 1, 2001, and a dis-
count rate of 5% at the issue date.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2001, 7, 1)

discount = .05

PRINT, TBILL_PRICE(settlement, maturity, discount)

 94.9306

TBILL_YIELD Function
Evaluates the yield of a Treasury bill.

Usage

result = TBILL_YIELD (settlement, maturity, price)

100 1
360

-

*�
��

�
��

discount rate DSM_

TBILL_YIELD Function 175

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

price  Price per $100 face value of the Treasury bill.

Returned Value

result  The yield for a Treasury bill. If no result can be computed, NaN is
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function TBILL_YIELD computes the yield for a Treasury bill.

It is computed using the following:

In the equation above, DSM represents the number of days in the period starting
with the settlement date and ending with the maturity date (any maturity date
that is more than one calendar year after the settlement date is excluded).

Example

In this example, TBILL_YIELD computes the yield for a Treasury bill with the
settlement date of July 1, 2000, the maturity date of July 1, 2001, and priced at
$94.93.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2001, 7, 1)

price = 94.93

100 360-
�
��

�
��
�
��

�
��

price

price DSM

176 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

PRINT, TBILL_YIELD(settlement, maturity, price)

 0.0526762

YEAR_FRACTION Function
Evaluates the fraction of a year represented by the number of whole days
between two dates.

Usage

result = YEAR_FRACTION (date_start, date_end, basis)

Input Parameters

date_start  Initial date. For a more detailed discussion on dates see Chapter 8,
Working with Date/Time Data in the PV-WAVE User’s Guide.

date_end  Ending date. For a more detailed discussion on dates see Chapter
8, Working with Date/Time Data in the PV-WAVE User’s Guide.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The fraction of a year represented by the number of whole days
between two dates. If no result can be computed, NaN is returned.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

YIELD_MATURITY Function 177

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function YEAR_FRACTION computes the fraction of the year.

It is computed using the following:

where A = the number of days from start to end, D = annual basis.

Example

In this example, YEAR_FRACTION computes the year fraction between
August 1, 2000, and July 1, 2001, using the US (NASD) 30/360 day count
method.

date_start = VAR_TO_DT(2000, 8, 1)

date_end = VAR_TO_DT(2001, 7, 1)

basis = 1

PRINT, YEAR_FRACTION(date_start, date_end, basis)

 0.916667

YIELD_MATURITY Function
Evaluates the annual yield of a security that pays interest at maturity.

Usage

result = YIELD_MATURITY (settlement, maturity, issue, rate, price, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

A / D

178 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8,
Working with Date/Time Data in the PV-WAVE User’s Guide.

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE
User’s Guide.

rate  Interest rate at date of issue of the security.

price  Price per $100 face value of the security.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The annual yield of a security that pays interest at maturity. If no
result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function YIELD_MATURITY computes the annual yield of a security that pays
interest at maturity.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

YIELD_MATURITY Function 179

It is computed using the following:

In the equation above, DIM represents the number of days in the period start-
ing with the issue date and ending with the maturity date. DSM represents the
number of days in the period starting with the settlement date and ending with
the maturity date. A represents the number of days in the period starting with
the issue date and ending with the settlement date. B represents the number of
days in a year based on the annual basis.

Example

In this example, YIELD_MATURITY computes the annual yield of a security
that pays interest at maturity which is selling at $95.40663 with the settlement
date of August 1, 2000, the issue date of July 1, 2000, the maturity date of July
1, 2010, and the interest rate of 6% at the issue using the US (NASD) 30/360
day count method.

settlement = VAR_TO_DT(2000, 8, 1)

maturity = VAR_TO_DT(2010, 7, 1)

issue = VAR_TO_DT(2000, 7, 1)

rate = .06

price = 95.40663

basis = 1

PRINT, YIELD_MATURITY(settlement, maturity, issue, $
rate, price, basis)

 0.0673905

1
100

100

+ *
�
��

�
��

�
�	

�� - + *

�
��

�
��

�
�	

��

+ *
�
��

�
��

�
��

�
��

�
�
��

�
��
*
�
��

�
��

DIM

B
rate

price A

B
rate

price A

B
rate

B

DSM

180 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

YIELD_PERIODIC Function
Evaluates the yield of a security that pays periodic interest.

Usage

result = YIELD_PERIODIC (settlement, maturity, coupon_rate, price,
redemption, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued
interest are paid. For a more detailed discussion on dates see Chapter 8,
Working with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual coupon rate.

price  Price per $100 face value of the security.

redemption  Redemption value per $100 face value of the security.

frequency  Frequency of the interest payments. It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

YIELD_PERIODIC Function 181

Returned Value

result  The yield of a security that pays interest periodically. If no result can
be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the internal rate of
return.

Highest  If present, the value is used as the maximum value of the internal
rate of return allowed.

Discussion

Function YIELD_PERIODIC computes the yield of a security that pays peri-
odic interest. If there is one coupon period use the following:

In the equation above, DSR represents the number of days in the period starting
with the settlement date and ending with the redemption date. E represents the
number of days within the coupon period. A represents the number of days in
the period starting with the beginning of coupon period and ending with the
settlement date.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption coupon rate

frequency

price A

E

coupon rate

frequency

price A

E

coupon rate

frequency

frequency E

DSR

100 100

100

+
�
��

�
�� - + *

�
��

�
��

�
�	

��

+ *
�
��

�
��

�
��

�
��

�

�
��

�
��

*�
��

�
��

_ _

_

182 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

If there is more than one coupon period use the following:

In the equation above, DSC represents the number of days in the period from
the settlement to the next coupon date. E represents the number of days within
the coupon period. N represents the number of coupons payable in the period
starting with the settlement date and ending with the redemption date. A
represents the number of days in the period starting with the beginning of the
coupon period and ending with the settlement date.

Example

In this example, YIELD_PERIODIC computes yield of a security which is
selling at $95.40663 with the settlement date of July 1, 1985, the maturity date
of July 1, 1995, and the coupon rate of 6% at the issue using the US (NASD)
30/360 day count method.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2010, 7, 1)

coupon_rate = .06

price = 95.40663

redemption = 105.

frequency = 2

basis = 1

PRINT, YIELD_PERIODIC(settlement, maturity, coupon_rate, $
price, redemption, frequency, basis)

 0.0700047

Chapter 10: Basic Statistics and Random Number

price
redemption

yield

frequency

rate

frequency

yield

frequency

rate

frequency

A

EN
DSC

E
k

DSC

Ek

N

-

+
�
��

�
��

�

�

������

�

�

������
+

*

+
�
��

�
��

�

�

						

�

������

- * *

�
��

�
��

�

�

������

�

�

������

=

- +
�
��

�
��

- +
�
��

�
��=

Ê
1

100

1

100 0
1 11

FAURE_INIT Function 183

Generation

FAURE_INIT Function
Initializes the structure used for computing a shuffled Faure sequence.

Usage

result = FAURE_INIT(ndim)

Input Parameters

ndim  The dimension of the hyper-rectangle.

Returned Value

A structure that contains information about the sequence.

Input Keywords

Base  The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

Skip  The number of points to be skipped at the beginning of the Faure
sequence. Default:

where

and B is the largest representable integer.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

/ 2 1m
base

−  

log /logB basem =   

184 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

The discrepancy of the point set

is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the
keyword Base defaults to the smallest prime greater than or equal to the
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

[]1,..., 0,1 , 1,
d

nx x d∈ ≥

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

))
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × × 

();E n

Dn
d

c d
n d

n
� � � � � �

�
log

n a n bi
i

i

=

=

�

Ê ()
0

FAURE_INIT Function 185

where ai (n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

0 � <a n bi � �

x c a n b j dn
j

kd
j

dk
d

k() () () ,= � �

=

�

=

�

- -ÊÊ
00

1 1

ck d
j()

()j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
k d = -

�

>

��
��

!

! !� �
0

186 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Example

In this example, five points in the Faure sequence are computed. The points are
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

 0.333689 0.492659 0.0640654

 0.667022 0.825992 0.397399

 0.778133 0.270436 0.175177

 0.111467 0.603770 0.508510

 0.444800 0.937103 0.841843

FAURE_NEXT_PT Function
Computes a shuffled Faure sequence.

Usage

result = FAURE_NEXT_PT(npts, state)

Input Parameters

npts  The number of points to generate in the hyper-rectangle.

state  State structure created by a call to FAURE_INIT.

Returned Value

An array of size npts by state.dim containing the npts next points in the shuffled
Faure sequence.

Input Keywords

Double  If present and nonzero, double precision is used.

FAURE_NEXT_PT Function 187

Output Keywords

Skip  The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for Skip, and using the same dimen-
sion for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the
keyword Base defaults to the smallest prime greater than or equal to the
dimension.

[]1,..., 0,1 , 1,
d

nx x d∈ ≥

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

))
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × × 

();E n

Dn
d

c d
n d

n
� � � � � �

�
log

188 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion

where ai(n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

n a n bi
i

i

=

=

�

Ê ()
0

0 � <a n bi � �

x c a n b j dn
j

kd
j

dk
d

k() () () ,= � �

=

�

=

�

- -ÊÊ
00

1 1

() ,jc
k d

()j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
k d = -

�

>

��
��

!

! !� �
0

Chapter 8: Time Series and Forecasting 189

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

 0.333689 0.492659 0.0640654

 0.667022 0.825992 0.397399

 0.778133 0.270436 0.175177

 0.111467 0.603770 0.508510

 0.444800 0.937103 0.841843

New PV-WAVE:IMSL Statistics Commands
This section lists the new functions and procedures have been added to
PV-WAVE:IMSL Statistics for version 7.5.

Chapter 8: Time Series and Forecasting

KALMAN Procedure
Performs Kalman filtering and evaluates the likelihood function for the state-
space model.

190 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Usage

KALMAN, b, covb, n, ss, alndet

Input/Output Parameters

b  One dimensional array of containing the estimated state vector. The input
is the estimated state vector at time k given the observations through time
k − 1. The output is the estimated state vector at time k + 1 given the observa-
tions through time k. On the first call to KALMAN, the input b must be the
prior mean of the state vector at time.

covb  Two dimensional array of size N_ELEMENTS(b) by
N_ELEMENTS(b) such that covb* σ2 is the mean squared error matrix for b.
Before the first call to KALMAN, covb* σ2 must equal the variance-covariance
matrix of the state vector.

n  Named vaiable containing the rank of the variance-covariance matrix for
all the observations. n must be initialized to zero before the first call to
KALMAN. In the usual case when the variance-covariance matrix is nonsingu-
lar, n equals the sum of the N_ELEMENTS(Y) from the invocations to
KALMAN. See the keyword section below for the definition of Y.

ss  Named vaiable containing the generalized sum of squares.
ss must be initialized to zero before the first call to KALMAN. The estimate of
σ2 is given by

alnet  Named vaiable containing the natural log of the product of the nonzero
eigenvalues of P where P * σ2 is the variance-covariance matrix of the observa-
tions. Although alndet is computed, KALMAN avoids the explicit computation
of P. alndet must be initialized to zero before the first call to KALMAN. In the
usual case when P is nonsingular, alndet is the natural log of the determinant of
P.

Input Keywords

Y  One dimensional array containing the observations. Keywords Y, Z and R
indicate an update step and must be used together

.
ss

n

KALMAN Procedure 191

R  Two dimensional array if size N_ELEMENTS(Y) by N_ELEMENTS(Y)
containing the matrix such that R * σ2 is the variance-covariance matrix of
errors in the observation equation. Keywords Y, Z and R indicate an update step
and must be used together.

T_matrix  Two dimensional array if size N_ELEMENTS(b) by
N_ELEMENTS(b) containing the transition matrix in the state equation.

Default: T_matrix = identity matrix

Q_matrix  Two dimensional array if size N_ELEMENTS(b) by
N_ELEMENTS(b) matrix such that Q_matrix * σ2 is the variance-covariance
matrix of the error vector in the state equation.

Default: There is no error term in the state equation

Tolerance  Tolerance used in determining linear dependence.

Default: Tolerance = 100*eps where eps is machine precision.

Output Keywords

V  One dimensional array of length N_ELEMENTS(Y) containing the one-
step-ahead prediction error.

Covv  Two dimensional array if size N_ELEMENTS(Y) by
N_ELEMENTS(Y) containing a matrix such that Covv * σ2 is the variance-
covariance matrix of v.

Discussion

Routine KALMAN is based on a recursive algorithm given by Kalman (1960),
which has come to be known as the Kalman filter. The underlying model is
known as the state-space model. The model is specified stage by stage where
the stages generally correspond to time points at which the observations become
available. The routine KALMAN avoids many of the computations and storage
requirements that would be necessary if one were to process all the data at the
end of each stage in order to estimate the state vector. This is accomplished by
using previous computations and retaining in storage only those items essential
for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input
in keyword Y) be the nk × 1 vector of observations that become available at
time k. The subscript k is used here rather than t, which is more customary in
time series, to emphasize that the model is expressed in stages k = 1, 2, … and

192 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

that these stages need not correspond to equally spaced time points. In fact, they
need not correspond to time points of any kind. The observation equation for
the state-space model is

yk = Zkbk + ek k = 1, 2, …

Here, Zk is an nk × q known matrix and bk is the q × 1 state vector. The state
vector bk is allowed to change with time in accordance with the state equation

bk+1 = Tk+1 bk + wk+1 k = 1, 2, …

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the
transition matrix Tk+1 (the identity matrix by default, or optionally input using
keyword T_MATRIX), which is assumed known. It is assumed that the q-dimen-
sional wks (k = 1, 2, ... K) are independently distributed multivariate normal
with mean vector 0 and variance-covariance matrix σ2Qk, that the nk-dimen-
sional eks (k = 1, 2, ... K) are independently distributed multivariate normal
with mean vector 0 and variance-covariance matrix σ2 Rk, and that the wks and
eks are independent of each other. Here, µ1is the mean of b1 and is assumed
known, σ2 is an unknown positive scalar. Qk+1 (input in Q) and Rk (input in
keyword R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observa-
tions y1, y2, …, yj by

By definition, the mean squared error matrix for

is

$

|βk j

$

|βk j

σ β β2C E b bk j k j k k j k
T= − −($)($)

KALMAN Procedure 193

At the time of the k-th invocation, we have

and

Ck|k-1, which were computed from the (k−1)-st invocation, input in b and covb,
respectively. During the k-th invocation, routine KALMAN computes the fil-
tered estimate

along with Ck|k. These quantities are given by the update equations:

where

and where

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the
variance-covariance matrix for vk. Hk is stored in covv. The “start-up values”
needed on the first invocation of KALMAN are

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th
invocation are completed by KALMAN computing the one-step-ahead estimate

$βk k −1

$

|βk k

$ $β βk k k k k k k
T

k k

k k k k k k k
T

k k k k

C Z H v

C C C Z H Z C

= +

= −

− −
−

− −
−

−

1 1
1

1 1
1

1

v y Zk k k k k= − −
$β 1

H R Z C Zk k k k k k
T= + −1

$β µ1 0 1=

$βk k+1

194 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

along with Ck+1|k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed by the
user at each time point, KALMAN can be invoked twice for each time point—
first without T_matrix and Q_matrix to produce

and Ck|k, and second without keywords Y, Z, and R to produce

and Ck+1|k (Without T_matrix and Q_matrix, the prediction equations are
skipped. Without keywords Y, Z, and R, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead,
i.e., an estimate of

is needed where k > j + 1. At time j, KALMAN is invoked with keywords Y, Z,
and R to compute

Subsequent invocations of KALMAN without keywords Y, Z, and R can
compute

Computations for

$ $β βk k k k k

k k k k k k
T

k

T

C T C T Q

+ +

+ + + +

=

= +

1 1

1 1 1 1

$βk k

$βk k+1

$βk j

$β j j+1

$, $, , $β β βj j j j k j+ +2 3 K

$βk j

KALMAN Procedure 195

and Ck|j assume the variance-covariance matrices of the errors in the observa-
tion equation and state equation are known up to an unknown positive scalar
multiplier, σ2. The maximum likelihood estimate of σ2 based on the observa-
tions y1, y2, …, ym, is given by

where

N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matri-
ces exactly. The earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known.
They may be known functions of an unknown parameter vector θ. In this case,
KALMAN can be used in conjunction with an optimization program (see rou-
tine FMINV, PV-WAVE: IMSL Mathematics Reference, Chapter 8,
“Optimization”) to obtain a maximum likelihood estimate of θ. The natural log-
arithm of the likelihood function for y1, y2, …, ym differs by no more than an
additive constant from

(Harvey 1981, page 14, equation 2.21).

Here,

$ /σ2 = SS N

1

1 1

m m
T

k k k k
k k

N n and SS v H v−

= =
= =∑ ∑

L y y y N

H v H v

m

k k
T

k k

k

m

k

m

(, ; , , ,)

[()]

q s s

s

2
1 2

2 1

11

1

2

1

2

1

2

196 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is
the variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, …, ym) over all θ and σ2 produces maximum
likelihood estimates. Equivalently, minimization of −2Lc(θ; y1, y2, …, ym) where

produces maximum likelihood estimates

The minimization of −2Lc(θ; y1, y2, …, ym) instead of −2L(θ, σ2; y1, y2, …, ym),
reduces the dimension of the minimization problem by one. The two optimiza-
tion problems are equivalent since

minimizes −2L(θ, σ2; y1, y2, …, ym) for all θ, consequently,

can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that dif-
fers by no more than an additive constant from Lc(θ; y1, y2, …, ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modifi-
cation for singular distributions described by Rao (1973, pages 527–528) is
used. The necessary changes in the preceding discussion are as follows:

1. Replace

by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

L y y y N
SS

N
Hc m k

k

m

(; , , ,) [()]q 1 2
1

1

2

1

2
K = -

�
��
�
�� -

=

Êln ln det

$
$ /θ σ and 2 = SS N

$ () () /s q q
2

= SS N

$ ()s q
2

Hk
−1

KALMAN Procedure 197

3. Replace N by

Maximum likelihood estimation of parameters in the Kalman filter is discussed
by Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example 1

Routine KALMAN is used to compute the filtered estimates and one-step-ahead
estimates for a scalar problem discussed by Harvey (1981, pages
116–117). The observation equation and state equation are given by

where the eks are identically and independently distributed normal with mean 0
and variance σ2, the wks are identically and independently distributed normal
with mean 0 and variance 4σ2, and b1 is distributed normal with mean 4 and
variance 16σ2. Two invocations of KALMAN are needed for each time point in
order to compute the filtered estimate and the one-step-ahead estimate. The first
invocation does not use the keywords T_matrix and Q_matrix so that the predic-
tion equations are skipped in the computations. The update equations are
skipped in the computations in the second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains a misprint for the value v4 that he gives as 1.197. The cor-
rect value of v4 = 1.003 is computed by KALMAN.

Note that this example is in the form of a WAVE procedure, with the output fol-
lowing the procedure.

PRO EX_KALMAN

z = 1

r = 1

q = 4

t = 1

()
1

m

k
k

rank H
=

∑

y b e

b b w k
k k k

k k k

= +
= + =+ +1 1 1 2 3 4, , ,

198 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

b = 4

covb = 16

ydata = [4.4, 4, 3.5, 4.6]

n = 0

ss = 0

alndet = 0

format = "(2I4, 2F8.3, I4, 4F8.3)"

PRINT, " k j b covb n ss alndet v
covv"

FOR i = 0, 3 DO BEGIN

 y = ydata(i)

 ; Update

 kalman, b, covb, n, ss, alndet, $

 Y = y, Z = Z, R = r, $

 v = v, covv = covv

 PRINT, i, i, b, covb, n, ss, alndet, v, covv, format =
format

 ; Predict

 kalman, b, covb, n, ss, alndet, $

 t_matrix = t, q = q

 PRINT, i+1, i, b, covb, n, ss, alndet, v, covv, format =
format

END

END

Output

k j b covb n ss alndet v covv

0 0 4.376 0.941 1 0.009 2.833 0.400 17.000

1 0 4.376 4.941 1 0.009 2.833 0.400 17.000

1 1 4.063 0.832 2 0.033 4.615 -0.376 5.941

Chapter 11: Probability Distribution Functions and Inverses 199

2 1 4.063 4.832 2 0.033 4.615 -0.376 5.941

2 2 3.597 0.829 3 0.088 6.378 -0.563 5.832

3 2 3.597 4.829 3 0.088 6.378 -0.563 5.832

3 3 4.428 0.828 4 0.260 8.141 1.003 5.829

4 3 4.428 4.828 4 0.260 8.141 1.003 5.829

Chapter 11: Probability Distribution Functions and
Inverses

BINOMIALPDF Function
Evaluates the binomial probability function.

Usage

result = BINOMIALPDF (k, n, p)

Input Parameters

k — Argument for which the binomial probability function is to be evaluated.

n — Number of Bernoulli trials.

p — Probability of success on each trial.

Returned Value

result — The probability that a binomial random variable takes a value equal to
k.

Discussion

The function BINOMIALPDF evaluates the probability that a binomial random
variable with parameters n and p takes on the value k. It does this by computing
probabilities of the random variable taking on the values in its range less than

200 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

(or the values greater than) k. These probabilities are computed by the recur-
sive relationship

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value
for computing the probabilities, which are rescaled by (1 − p)nε if forward
computation is performed and by pnε if backward computation is done.

For the special case of p = 0, BINOMIALPDF returns 0 if k is greater than 0
and to 1 otherwise; and for the case p = 1, BINOMIALPDF returns 0 if k is less
than n and to 1 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is equal to 3.

PRINT, BINOMIALPDF(3, 5, .95)

0.0214344

Chapter 12: Random Number Generation

RANDOM_TABLE Procedure
Sets or retrieves the current table used in either the shuffled or GFSR random
number generator.

Usage
RANDOM_TABLE, table, /Get

RANDOM_TABLE, table, /Set

Pr(Pr(X j
n j p

j p
X j= = + −

−
= −)

()

()
)

1

1
1

RANDOM_TABLE Procedure 201

Input/Output Parameters

table  One dimensional array used in the generators. For the shuffled genera-
tors table is length 128. For the GFSR generator table is length 1565. The
argument table is input if the keyword Set is used, and output if the keyword
Get is used.

Input Keywords

Set  If present and nonzero, then the specified table is being set.

Get  If present and nonzero, then the specified table is being retieved.

Gfsr  If present and nonzero, then the specified GFSR table is being set or
retrieved.

Double  If present and nonzero, double precision is used. This keyword is
active only when the shuffled table is being set or retrieved.

Discussion

The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which
case the first element of the array is input as a nonpositive value. (Usually, one
should avoid reinitializing these arrays, but it might be necessary sometimes in
restarting a simulation.) If the first element of table is set to a nonpositive value
on the call to RANDOM_TABLE with the keyword Set, on the next invocation
of a routine to generate random numbers, the appropriate table will be
reinitialized.

For more details on the shuffled and GFSR generators see the Introduction to
Chapter 12 in the PV-WAVE: IMSL Statistics Reference.

Example

In this example, three separate simulation streams are used, each with a differ-
ent form of the generator. Each stream is stopped and restarted. (Although this
example is obviously an artificial one, there may be reasons for maintaining
separate streams and stopping and restarting them because of the nature of the
usage of the random numbers coming from the separate streams.)

nr = 5

iseed1 = 123457

iseed2 = 123457

202 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

iseed7 = 123457

; Begin first stream, iopt = 1 (by default)

RANDOMOPT, Set = iseed1

r = RANDOM(nr)

RANDOMOPT, Get = iseed1

PM, r, Title = ’First stream output’

First stream output

0.966220

0.260711

0.766262

0.569337

0.844829

PRINT, ’output seed ’, iseed1

output seed 1814256879

; Begin second stream, iopt = 2

RANDOMOPT, gen_opt = 2

RANDOMOPT, Set = iseed2

r = RANDOM(nr)

RANDOMOPT, Get = iseed2

RANDOM_TABLE, table, /Get

PM, r, Title = ’Second stream output’

Second stream output

0.709518

0.186145

0.479442

0.603839

0.379015

PRINT, ’output seed ’, iseed2

output seed 1965912801

; Begin third stream, iopt = 7

RANDOMOPT, gen_opt = 7

RANDOMOPT, Set = iseed7

RANDOM_TABLE Procedure 203

r = RANDOM(nr)

RANDOMOPT, Get = iseed7

RANDOM_TABLE, itable, /Get, /GFSR

PM, r, Title = ’Third stream output’

Third stream output

0.391352

0.0262676

0.762180

0.0280987

0.899731

PRINT, ’output seed ’, iseed7

output seed 1932158269

; Reinitialize seed and resume first stream

RANDOMOPT, gen_opt = 1

RANDOMOPT, Set = iseed1

r = RANDOM(nr)

RANDOMOPT, Get = iseed1

pm, r, title = ’First stream output’

First stream output

0.0442665

0.987184

0.601350

0.896375

0.380854

PRINT, ’output seed ’, iseed1

output seed 817878095

; Reinitialize seed and table for shuffling and

; resume second stream

RANDOMOPT, gen_opt = 2

RANDOMOPT, Set = iseed2

RANDOM_TABLE, table, /Set

r = RANDOM(nr)

RANDOMOPT, Get = iseed2

204 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

PM, r, Title = ’Second stream output’

Second stream output

0.255690

0.478770

0.225802

0.345467

0.581051

PRINT, ’output seed ’, iseed2

output seed 2108806573

; Reinitialize seed and table for GFSR and

; resume third stream.

RANDOMOPT, gen_opt = 7

RANDOMOPT, Set = iseed7

RANDOM_TABLE, itable, /Set, /Gfsr

r = RANDOM(nr)

RANDOMOPT, Get = iseed7

PM, r, Title = ’Third stream output’

Third stream output

0.751854

0.508370

0.906986

0.0910035

0.691663

PRINT, ’output seed ’, iseed7

output seed 1485334679

RANDOM_NPP Function
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Usage

result = RANDOM_NPP(tbegin, tend, ftheta, theta_min, theta_max, neub)

RANDOM_NPP Function 205

Input Parameters

tbegin — Lower endpoint of the time interval of the process.
tbegin must be nonnegative. Usually, tbegin = 0.

tend — Upper endpoint of the time interval of the process.
tend must be greater than tbegin.

ftheta — Scalar string specifying a user-supplied function to provide the value
of the rate of the process as a function of time. This function accepts one argu-
ment and must be defined over the interval from tbegin to tend and must be
nonnegative in that interval.

theta_min — Minimum value of the rate function ftheta() in the interval
(tbegin, tend).
If the actual minimum is unknown, set theta_min = 0.0.

theta_max — Maximum value of the rate function ftheta in the interval (tbe-
gin, tend).
If the actual maximum is unknown, set theta_max to a known upper bound of
the maximum. The efficiency of RANDOM_NPP is less the greater theta_max
exceeds the true maximum.

neub — Upper bound on the number of events to be generated.
In order to be reasonably sure that the full process through time tend is gener-
ated, calculate neub as neub = X + 10.0 * SQRT(X), where X = theta_max *
(tend - tbegin).

Returned Value

A one dimensional array containing the times to events. If then length of the
result is less that neub, the time tend is reached before neub events are realized

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Routine RANDOM_NPP simulates a one-dimensional nonhomogeneous Pois-
son process with rate function theta in a fixed interval (tend - tbegin].

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine
RANDOM_NPP uses a method of thinning a nonhomogeneous Poisson process

206 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

{N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1], where the number of
events, N*, in the interval (t0, t1] has a Poisson distribution with parameter

The function

is called the integrated rate function.In RANDOM_NPP, λ*(t) is taken to be a
constant λ*(= theta_max) so that at time ti, the time of the next event ti + 1 is
obtained by generating and cumulating exponential random numbers

with parameter λ*, until for the first time

where the uj,i are independent uniform random numbers between 0 and 1. This
process is continued until the specified number of events, neub, is realized or
until the time, tend, is exceeded. This method is due to Lewis and Shedler
(1979), who also review other methods. The most straightforward (and most
efficient) method is by inverting the integrated rate function, but often this is
not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the routine
will work, but less efficiently. Also, if λ(t) varies greatly within the interval, the
efficiency is reduced. In that case, it may be desirable to divide the time interval
into subintervals within which the rate function is less variable. This is possible
because the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for
the required number of events to be realized. Care must be taken, however, that
ftheta is defined over the entire interval.

After simulating a given number of events, the next event can be generated by
setting tbegin to the time of the last event (the sum of the elements in the result)

()1

0

t

t
t dtµ = λ∫

Λ t t dt
t� � � �=
′	 λ0

* *
1, 2,, , ,i iE E K

()* * *
, 1, , /j i i i j iu t E E≤ + + + λL

RANDOM_NPP Function 207

and calling RANDOM_NPP again. Cox and Lewis (1966) discuss modeling
applications of nonhomogeneous Poisson processes.

Example

In this example, RANDOM_NPP is used to generate the first five events in the
time 0 to 20 (if that many events are realized) in a nonhomogeneous process
with rate function

λ(t) = 0.6342 e0.001427t

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at
t = 0 and is 0.6342, and the maximum is at t = 20 and is
0.6342 e0.02854 = 0.652561.

.RUN

- FUNCTION ftheta_npp, t

- return, .6342*exp(.001427*t)

- END

% Compiled module: FTHETA_NPP.

randomopt, set=123457

neub = 5

tmax = .652561

tmin = .6342

tbegin=0

tend=20

r = RANDOM_NPP(tbegin, tend, ’ftheta_npp’, tmin, tmax, neub)

PM, r

0.0526598

0.407979

0.258399

0.0197666

0.167641

208 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

RANDOM_ORDER Function
Generates pseudorandom order statistics from a uniform (0, 1) distribution, or
optionally from a standard normal distribution.

Usage

result = RANDOM_ORDER(ifirst, ilast, n)

Input Parameters

ifirst — First order statistic to generate.

ilast — Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order statistics from
ifirst to ilast is generated. If only one order statistic is desired, set ilast = ifirst.

n — Size of the sample from which the order statistics arise.

Input Keywords

Double — If present and nonzero, double precision is used.

Uniform — If present and nonzero, generate pseudorandom order statistics
from a uniform (0, 1) distribution. (Default)

Normal — If present and nonzero, generate pseudorandom order statistics from
a standard normal distribution.

Returned Value

An array of length ilast + 1 − ifirst containing the random order statistics in
ascending order.

The first element is the ifirst order statistic in a random sample of size n from
the uniform (0, 1) distribution.

Discussion

Routine RANDOM_ORDER generates the ifirst through the ilast order statistics
from a pseudorandom sample of size n from a uniform
(0, 1) distribution. Depending on the values of ifirst and ilast, different meth-
ods of generation are used to achieve greater efficiency. If ifirst = 1 and

RAND_TABLE_2WAY Function 209

ilast = n, that is, if the full set of order statistics are desired, the spacings
between successive order statistics are generated as ratios of exponential vari-
ates. If the full set is not desired, a beta variate is generated for one of the order
statistics, and the others are generated as extreme order statistics from condi-
tional uniform distributions. Extreme order statistics from a uniform distribution
can be obtained by raising a uniform deviate to an appropriate power.

Each call to RANDOM_ORDER yields an independent event. This means, for
example, that if on one call the fourth order statistic is requested and on a sec-
ond call the third order statistic is requested, the “fourth” may be smaller than
the “third”. If both the third and fourth order statistics from a given sample are
desired, they should be obtained from a single call to RANDOM_ORDER (by
specifying ifirst less than or equal to 3 and ilast greater than or equal to 4).

If the keyword Normal is present and nonzero, then RANDOM_ORDER gener-
ates the ifirst through the ilast order statistics from a pseudorandom sample of
size n, from a normal (0, 1) distribution

Example

In this example, RANDOM_ORDER is used to generate the fifteenth through
the nineteenth order statistics from a sample of size twenty.

r = random_order(15, 19, 20)

pm, r

 0.706909

 0.808627

 0.874552

 0.922146

 0.957402

RAND_TABLE_2WAY Function
Generates a pseudorandom two-way table.

Usage

result = RAND_TABLE_2WAY (row_totals, col_totals)

210 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Parameters

row_totals — One dimensional array containing the row totals.

col_totals — One dimensional array containing the column totals. (Input)
The elements of row_totals and col_totals must be nonnegative and must sum
to the same quantity.

Returned Value

A N_ELEMENTS(row_totals) by N_ELEMENTS(col_totals) random matrix
with the given row and column totals.

Discussion

Routine RAND_TABLE_2WAY generates pseudorandom entries for a two-way
contingency table with fixed row and column totals. The method depends on the
size of the table and the total number of entries in the table. If the total number
of entries is less than twice the product of the number of rows and columns, the
method described by Boyette (1979) and by Agresti, Wackerly, and Boyette
(1979) is used. In this method, a work vector is filled with row indices so that
the number of times each index appears equals the given row total. This vector
is then randomly permuted and used to increment the entries in each row so that
the given row total is attained.

For tables with larger numbers of entries, the method of Patefield (1981) is
used. This method can be considerably faster in these cases. The method
depends on the conditional probability distribution of individual elements, given
the entries in the previous rows. The probabilities for the individual elements
are computed starting from their conditional means.

Example

In this example, RAND_TABLE_2WAY is used to generate a two by three table
with row totals 3 and 5, and column totals 2, 4, and 2.

r = RAND_TABLE_2WAY([3, 5], [2, 4, 2])

PM, r

 2 1 0

 0 3 2

RAND_ORTH_MAT Function 211

RAND_ORTH_MAT Function
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Usage

result = RAND_ORTH_MAT(n)

Input Parameters

n — The order of the matrix to be generated.

Returned Value

A two-dimensional array containing the n by n random correlation matrix.

Input Keywords

Double  If present and nonzero, double precision is used.

Eigenvalues  A one-dimensional array of length n containing the eigenval-
ues of the correlation matrix to be generated. The elements of Eigenvalues
must be positive, they must sum to n, and they cannot all be equal.

A_Matrix  A two-dimensional array containing n by n random orthogonal
matrix. A random correlation matrix is generated using the orthogonal matrix
input in A_Matrix. The keyword Eigenvalues must also be supplied if A_Matrix
is used.

Discussion

Routine RAND_ORTH_MAT generates a pseudorandom orthogonal matrix
from the invariant Haar measure. For each column, a random vector from a uni-
form distribution on a hypersphere is selected and then is projected onto the
orthogonal complement of the columns already formed. The method is
described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the keyword Eigenvalues is used, a correlation matrix is formed by applying
a sequence of planar rotations to the matrix AT DA, where D = diag(Eigenval-
ues(0), …, Eigenvalues(n-1)), so as to yield ones along the diagonal. The
planar rotations are applied in such an order that in the two by two matrix that
determines the rotation, one diagonal element is less than 1.0 and one is greater

212 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin
and Bendel (1985).

The distribution of the correlation matrices produced by this method is not
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the
distribution.

For larger matrices, rounding can become severe; and the double precision
results may differ significantly from single precision results.

Example

In this example, RAND_ORTH_MAT is used to generate a 4 by 4 pseudoran-
dom correlation matrix with eigenvalues in the ratio 1:2:3:4.

RANDOMOPT, set = 123457

a = RAND_ORTH_MAT(4)

ev = .4d0*[1.0d0, 2.0d0, 3.0d0, 4.0d0]

cor = RAND_ORTH_MAT(n, Eigenvalues = ev, A_Matrix= a)

PM, cor

 1.00000 -0.235786 -0.325795 -0.110139

 -0.235786 1.00000 0.190564 -0.0172391

 -0.325795 0.190564 1.00000 -0.435339

 -0.110139 -0.0172391 -0.435339 1.00000

RANDOM_SAMPLE Function
Generates a simple pseudorandom sample from a finite population.

Usage

result = RANDOM_SAMPLE(nsamp, population)

Input Parameters

nsamp — The sample size desired.

population  A one or two dimensional array containing the population to be
sampled. If either of the keywords First_Call or Additional_Call are specified,
then population contains a different part of the population on each invocation,
otherwise population contains the entire population.

RANDOM_SAMPLE Function 213

Returned Value

nsamp by nvar array containing the sample, where nvar is the number of col-
umns in the argument population.

Input Keywords

Double  If present and nonzero, double precision is used.

First_Call  If present and nonzero, then this is the first invocation with this
data; additional calls to RANDOM_SAMPLE may be made to add to the popu-
lation. Additional calls should be made using the keyword Additional_Call.
Keywords Index and Npop are required if First_Call is set. See Example 2 .

Additional_Call  If present and nonzero, then this is an additional invocation
of RANDOM_SAMPLE, and updating for the subpopulation in population is
performed. Keywords Index, Npop and Sample are required if Additional_Call
is set. It is not necessary to know the number of items in the population in
advance. Npop is used to cumulate the population size and should not be
changed between calls to RANDOM_SAMPLE. See Example 2.

Input/Output Keywords

Index  A one-dimensional array of length nsamp containing the indices of the
sample in the population. Output if keyword First_Call is used. Input/Output if
keyword Additional_Call is used.

Npop  The number of items in the population. Output if keyword First_Call
is used. Input/Output if keyword Additional_Call is used.

Sample  An array of size nsamp by nvar containing the sample. Initially, the
result of calling RANDOM_SAMPLE with keyword First_Call is used for
Sample.

Discussion

Routine RANDOM_SAMPLE generates a pseudorandom sample from a given
population, without replacement, using an algorithm due to McLeod and Bell-
house (1983).

The first nsamp items in the population are included in the sample. Then, for
each successive item from the population, a random item in the sample is
replaced by that item from the population with probability equal to the sample

214 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

size divided by the number of population items that have been encountered at
that time.

Example 1

In this example, RANDOM_SAMPLE is used to generate a sample of size 5
from a population stored in the matrix population.

RANDOMOPT, Set = 123457

pop = STATDATA(2)

samp = RANDOM_SAMPLE(5, pop)

PM, samp

 1764.00 36.4000

 1828.00 62.5000

 1923.00 5.80000

 1773.00 34.8000

 1769.00 106.100

Example 2

Routine RANDOM_SAMPLE is now used to generate a sample of size 5 from
the same population as in the example above except the data are input to
RANDOM_SAMPLE one observation at a time. This is the way
RANDOM_SAMPLE may be used to sample from a file on disk or tape. Notice
that the number of records need not be known in advance.

RANDOMOPT, Set = 123457

pop = STATDATA(2)

samp = RANDOM_SAMPLE(5, pop(0, *), /First_Call, Index = ii,
Npop=np)

FOR i=1,175 DO samp = RANDOM_SAMPLE(5, pop(i, *), /
Additional_Call, $

 index = ii, npop = np, sample = samp)

PM, samp

 1764.00 36.4000

 1828.00 62.5000

 1923.00 5.80000

 1773.00 34.8000

 1769.00 106.100

RAND_FROM_DATA Function 215

RAND_FROM_DATA Function
Generates pseudorandom numbers from a multivariate distribution determined
from a given sample.

Usage

result = RAND_FROM_DATA(n_random, x, nn)

Input Parameters

n_random  Number of random multivariate vectors to generate.

x  Two dimensional array of size nsamp by ndim containing the given
sample.

nn  Number of nearest neighbors of the randomly selected point in x that are
used to form the output point in the result.

Returned Value

n by ndim matrix containing the random multivariate vectors in its rows.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Given a sample of size nsamp of observations of a k-variate random variable,
RAND_FROM_DATA generates a pseudorandom sample with approximately
the same moments as the given sample. The sample obtained is essentially the
same as if sampling from a Gaussian kernel estimate of the sample density. (See
Thompson 1989.) Routine RAND_FROM_DATA uses methods described by
Taylor and Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An obser-
vation, xj, is chosen randomly; its nearest m (= nn) neighbors,

x x xj j jm1 2
, , ,K

216 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

are determined; and the mean

of those nearest neighbors is calculated. Next, a random sample

u1, u2, …, um is generated from a uniform distribution with lower bound

and upper bound

The random variate delivered is

The process is then repeated until n such simulated variates are generated and
stored in the rows of the result.

Example

In this example, RAND_FROM_DATA is used to generate 5 pseudorandom
vectors of length 4 using the initial and final systolic pressure and the initial and
final diastolic pressure from Data Set A in Afifi and Azen (1979) as the fixed
sample from the population to be modeled. (Values of these four variables are in
the seventh, tenth, twenty-first, and twenty-fourth columns of data set number
nine in routine STATDATA, see Chapter 13: Utilities of this manual).

RANDOMOPT, Set = 123457
r = STATDATA(9)

x = FLTARR(113, 4)

x(*, 0) = r(*,6)

x(*, 1) = r(*,9)

x(*, 2) = r(*,20)

x(*, 3) = r(*,23)

r = RAND_FROM_DATA(5, x, 5)

PM, r

 x j

1 3 1
2m

m

m
−

−� �

1 3 1

2m

m

m
+

−� �

u x x xl jl j
l

m

j− +
=

∑
 �
1

CONT_TABLE Procedure 217

 162.767 90.5057 153.717 104.877

 153.353 78.3180 176.664 85.2155

 93.6958 48.1675 153.549 71.3688

 101.751 54.1855 113.121 56.2916

 91.7403 58.7684 48.4368 28.0994

CONT_TABLE Procedure
Sets up table to generate pseudorandom numbers from a general continuous
distribution.

Usage

CONT_TABLE, f, iopt, ndata, table

Input Parameters

f  A scalar string specifying a user-supplied function to compute the cumula-
tive distribution function. The argument to the function is the point at which the
distribution function is to be evaluated.

iopt  Indicator of the extent to which table is initialized prior to calling
CONT_TABLE.

iopt Action

0 CONT_TABLE fills the last four columns
of table. The user inputs the points at
which the CDF is to be evaluated in the
first column of table. These must be in
ascending order.

1 CONT_TABLE fills the last three columns
of table. The user supplied function f is not
used and may be a dummy function;
instead, the cumulative distribution func-
tion is specified in the first two columns of
table. The abscissas (in the first column)
must be in ascending order and the func-
tion must be strictly monotonically
increasing.

218 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

ndata  Number of points at which the CDF is evaluated for interpolation.
ndata must be greater than or equal to 4.

Input/Output Parameters

table  ndata by 5 table to be used for interpolation of the cumulative distribu-
tion function.
The first column of table contains abscissas of the cumulative distribution func-
tion in ascending order, the second column contains the values of the CDF
(which must be strictly increasing), and the remaining columns contain values
used in interpolation. The first row of table corresponds to the left limit of the
support of the distribution and the last row corresponds to the right limit of the
support; that is, table (0, 1) = 0.0 and table(ndata-1, 1) = 1.0.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Routine CONT_TABLE sets up a table that routine RAND_GEN_CONT (page
219) can use to generate pseudorandom deviates from a continuous distribu-
tion. The distribution is specified by its cumulative distribution function, which
can be supplied either in tabular form in table or by a function f. See the docu-
mentation for the routine RAND_GEN_CONT for a description of the method.

Example

For an example of using CONT_TABLE see the example for routine
RAND_GEN_CONT (page 219).

RAND_GEN_CONT Function
Generates pseudorandom numbers from a general continuous distribution.

Usage

result = RAND_GEN_CONT(n, table)

RAND_GEN_CONT Function 219

Input Parameters

n  Number of random numbers to generate.

table A two-dimensional array setup using CONT_TABLE to be used for
interpolation of the cumulative distribution function.
The first column of table contains abscissas of the cumulative distribution func-
tion in ascending order, the second column contains the values of the CDF
(which must be strictly increasing beginning with 0.0 and ending at 1.0) and the
remaining columns contain values used in interpolation.

Returned Value

An array of length n containing the random deviates.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Routine RAND_GEN_CONT generates pseudorandom numbers from a continu-
ous distribution using the inverse CDF technique, by interpolation of points of
the distribution function given in table, which is set up by routine
CONT_TABLE (page 218). A strictly monotone increasing distribution func-
tion is assumed. The interpolation is by an algorithm attributable to Akima
(1970), using piecewise cubics. The use of this technique for generation of ran-
dom numbers is due to Guerra, Tapia, and Thompson (1976), who give a
description of the algorithm and accuracy comparisons between this method and
linear interpolation. The relative errors using the Akima interpolation are gener-
ally considered very good.

Example

In this example, RAND_GEN_CONT (page 219) is used to set up a table for
generation of beta pseudorandom deviates. The CDF for this distribution is
computed by the routine BETACDF (Chapter 11). The table contains 100 points
at which the CDF is evaluated and that are used for interpolation. Notice that
two warnings are issued during the computations for this example.

FUNCTION cdf, x

 return, BETACDF(x, 3., 2.)

220 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

END

iopt = 0

ndata = 100;

table = FLTARR(100, 5)

x = 0.0;

table(*,0) = FINDGEN(100)/100.

CONT_TABLE, ’cdf’, iopt, ndata, table

RANDOMOPT, Set = 123457

r = RAND_GEN_CONT(5, table)

% BETACDF: Note: STAT_ZERO_AT_X

Since "X" = 0.000000e+00 is less than or equal to zero,

the distribution function is zero at "x".

% CONT_TABLE: Warning: STAT_SECOND_COL_TABLE3

CDF in the second column of table did not begin at 0.0

and end at 1.0, but they have been adjusted. Prior

to adjustment, table(0, 1) = 0.000000e+00 and

table(ndata-1, 1)= 9.994079e-01.

PM, r

 0.92079391

 0.46412855

 0.76678398

 0.65357975

 0.81706959

DISCR_TABLE Function
Sets up table to generate pseudorandom numbers from a general discrete
distribution.

Usage

result = DISCR_TABLE(prf, del, nndx, imin, nmass)

DISCR_TABLE Function 221

Input Parameters

prf  A scalar string specifying a user-supplied function to compute the proba-
bility associated with each mass point of the distribution The argument to the
function is the point at which the probability function is to be evaluated. The
argument to the function can range from imin to the value at which the cumula-
tive probability is greater than or equal to 1.0 − del.

del  Maximum absolute error allowed in computing the cumulative probabi
ity.
Probabilities smaller than del are ignored; hence, del should be a small positive
number. If del is too small, however, cumpr (nmass-1) must be exactly 1.0 since
that value is compared to 1.0 − del.

nndx  The number of elements of cumpr available to be used as indexes.
nndx must be greater than or equal to 1. In general, the larger nndx is, to within
sixty or seventy percent of nmass, the more efficient the generation of random
numbers using RAND_GEN_DISCR will be.

Input/Out Parameters

imin  Scalar containing the smallest value the random deviate can assume.
By default, prf is evaluated at imin. If this value is less than del, imin is incre-
mented by 1 and again prf is evaluated at imin. This process is continued until
prf(imin) ≥ del. imin is output as this value and result(0) is output as prf(imin).

nmass  Scalar containing the number of mass points in the distribution.
Input, if keyword CUM_probs is used; otherwise, output.
By default, nmass is the smallest integer such that
prf(imin + nmass− 1) > 1.0 − del. nmass does include the points iminin + j
for which prf(iminin + j) < del, for j = 0, 1, …,
iminout − iminin, where iminin denotes the input value of imin and iminout
denotes its output value.

Returned Value

Array, cumpr, of length nmass + nndx containing in the first nmass positions,
the cumulative probabilities and in some of the remaining positions, indexes to
speed access to the probabilities.

Input Keywords

Double  If present and nonzero, double precision is used.

222 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Cum_Probs  One dimensional array of length nmass containing the cumula-
tive probabilities to be used in computing the index portion of the result. If the
keyword Cum_Probs is used, prf is not used and may be a dummy function.

Discussion

Routine DISCR_TABLE sets up a table that routine RAND_GEN_CONT (page
219) uses to generate pseudorandom deviates from a discrete distribution. The
distribution can be specified either by its probability function prf or by a vector
of values of the cumulative probability function. Note that prf is not the cumu-
lative probability distribution function. If the cumulative probabilities are
already available in Cum_Probs, the only reason to call DISCR_TABLE is to
form an index vector in the upper portion of the result so as to speed up the
generation of random deviates by the routine RAND_GEN_CONT.

Example 1

In this example, DISCR_TABLE is used to set up a table to generate pseudo-
random variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly using
keyword Cum_Probs and request 3 indexes to be computed (nndx = 4). Since
the number of mass points is so small, the indexes would not have much effect
on the speed of the generation of the random variates.

function PRF, x

 return, 0

end

cum_probs = [.05, .5, .81, .85, 1]

cumpr = DISCR_TABLE(’PRF’, 0.00001, 4, 1, 5, cum_probs =
cum_probs)

PM, cumpr

 0.0500000

DISCR_TABLE Function 223

 0.500000

 0.810000

 0.850000

 1.00000

 3.00000

 1.00000

 2.00000

 5.00000

Example 2

This example, DISCR_TABLE is used to set up a table to generate binomial
variates with parameters 20 and 0.5. The routine BINOMIALPDF (Chapter 11,
Probability Distribution and Inverses) is used to compute the probabilities.

FUNCTION PRF, ix

 RETURN, BINOMIALPDF(ix, 20, .5)

END

cumpr = DISCR_TABLE(’PRF’, 0.00001, 12, 0, 21)

PM, cumpr

 1.90735e-05

 0.000200272

 0.00128746

 0.00590802

 0.0206938

 0.0576583

 0.131587

 0.251722

 0.411901

 0.588099

 0.748278

 0.868413

 0.942342

 0.979306

 0.994092

224 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

 0.998713

 0.999800

 0.999981

 1.00000

 11.0000

 1.00000

 7.00000

 8.00000

 9.00000

 9.00000

 10.0000

 11.0000

 11.0000

 12.0000

 13.0000

 19.0000

RAND_GEN_DISCR Function
Generates pseudorandom numbers from a general discrete distribution using an
alias method or optionally a table lookup method.

Usage

result = RAND_GEN_DISCR(n, imin, nmass, probs)

Input Parameters

n — Number of random numbers to generate.

imin — Smallest value the random deviate can assume.
This is the value corresponding to the probability in probs(0).

nmass — Number of mass points in the discrete distribution.

probs — Array of length nmass containing probabilities associated with the
individual mass points. The elements of probs must be nonnegative and must
sum to 1.0.

RAND_GEN_DISCR Function 225

If the keyword Table is used, then probs is a vector of length at least nmass + 1
containing in the first nmass positions the cumulative probabilities and, possi-
bly, indexes to speed access to the probabilities.
Routine DISCR_TABLE (page 221) can be used to initialize probs properly. If
no elements of probs are used as indexes, probs (nmass) is 0.0 on input. The
value in probs(0) is the probability of imin. The value in probs (nmass-1) must
be exactly 1.0 (since this is the CDF at the upper range of the distribution.)

Returned Value

An integer array of length n containing the random discrete deviates.

Input Keywords

Double — If present and nonzero, double precision is used.

Table — If present and nonzero, generate pseudorandom numbers from a gen-
eral discrete distribution using a table lookup method. If this keyword is used,
then probs is a vector of length at least nmass + 1 containing in the first nmass
positions the cumulative probabilities and, possibly, indexes to speed access to
the probabilities. Routine DISCR_TABLE (page 221) can be used to initialize
probs properly.

Discussion

Routine RAND_GEN_DISCR generates pseudorandom numbers from a discrete
distribution with probability function given in the vector probs; that is

Pr(X = i) = pj

for i = imin, imin + 1, …, imin + nm − 1 where j = i − imin + 1, pj = probs(j),
imin = imin, and nm = nmass.

The algorithm is the alias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979).

If the keyword Table is used, RAND_GEN_DISCR generates pseudorandom
deviates from a discrete distribution, using the table probs, which contains the
cumulative probabilities of the distribution and, possibly, indexes to speed the
search of the table. The DISCR_TABLE (page 221) can be used to set up the
table probs. RAND_GEN_DISCR uses the inverse CDF method to generate the
variates.

226 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Example 1

In this example, RAND_GEN_DISCR is used to generate five pseudorandom
variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

probs = [.05, .45, .31, .04, .15]

n = 5

imin = 1

nmass = 5

RANDOMOPT, Set_seed = 123457

r = RAND_GEN_DISCR(n, imin, nmass, probs)

PM, r

 3

 2

 2

 3

 5

Example 2

In this example, DISCR_TABLE (page 221) is used to set up a table and then
RAND_GEN_DISCR is used to generate five pseudorandom variates from the
binomial distribution with parameters 20 and 0.5.

FUNCTION PRF, ix

 RETURN, BINOMIALPDF(ix, 20, .5)

END

imin = 0

nmass = 21

RANDOMOPT, Set_seed = 123457

cumpr = DISCR_TABLE(’prf’, 0.00001, 12, imin, nmass)

RANDOM_ARMA Function 227

r = RAND_GEN_DISCR(n, imin, nmass, cumpr, /table)

PM, r

 14

 9

 12

 10

 12

RANDOM_ARMA Function
Generates a time series from a specific ARMA model.

Usage

result = RANDOM_ARMA(n, nparams)

result = RANDOM_ARMA(n, nparams, ar)

result = RANDOM_ARMA(n, nparams, ma)

result = RANDOM_ARMA(n, nparams, ar, ma)

Input Parameters

n — Number of observations to be generated. Parameter n must be greater than
or equal to one.

nparams — One-dimensional array containing the parameters p and q consecu-
tively. nparams(0) = p, where p is the number of autoregressive parameters. Pa-
rameter p must be greater than or equal to zero. nparams(1) = q, where q is the
number of moving average parameters. Parameter q must be greater than or
equal to zero.

ar — One-dimensional array of length p containing the autoregressive parame-
ters.

ma — One-dimensional array of length q containing the moving average pa-
rameters.

Returned Value

result — One-dimensional array of length n containing the generated time se-
ries.

228 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Input Keywords

Double — If present and nonzero, double precision is used.

Const — Overall constant. See the Discussion section.

Default: Const = 0

Var_Noise — If present (and Input_Noise is not used), the noise at will be gen-
erated from a normal distribution with mean 0 and variance Var_Noise.
Keywords Var_Noise and Input_Noise can not be used together.

Default: Var_Noise = 1.0

Input_Noise — One-dimensional array of length n + max (Ar_Lags(i)) contain-
ing the random noises. Keywords Input_Noise and Var_Noise can not be used
together. Keywords Input_Noise and Output_Noise can not be used together.

Ar_Lags — One-dimensional array of length p containing the order of the non-
zero autoregressive parameters.

Default: Ar_Lags = [1, 2, ..., p]

Ma_Lags — One-dimensional array of length q containing the order of the non-
zero moving average parameters.

Default: Ma_Lags = [1, 2, ..., q]

W_Init — One-dimensional array of length max (Ar_Lags(i)) containing the
initial values of the time series.

Default: W_Init(*) = Const/(1 − ar(0) − ar(1) − …− ar(p − 1))

Accept_Reject — If present and nonzero, the random noises will be generated
from a normal distribution using an acceptance/rejection method. If keyword
Accept_Reject is not used, the random noises will be generated using an in-
verse normal CDF method. This argument will be ignored if keyword
Input_Noise is used.

Output Keywords

Output_Noise — Named variable into which a one-dimensional array of length
n + max (Ma_Lags(i)) containing the random noises is stored.

Discussion

Function RANDOM_ARMA simulates an ARMA(p, q) process, {Wt}, for

RANDOM_ARMA Function 229

t = 1, 2, ..., n. The model is

Let µ be the mean of the time series {Wt}. The overall constant θ0 (Const) is

Time series whose innovations have a nonnormal distribution may be simulated
by providing the appropriate innovations in Input_Noise and start values in
W_Init.

The time series is generated according to the following model:

X(i) = Const + ar(0) * X(i – Ar_Lags(0)) + … +

ar(p – 1) * X(i – Ar_Lags(p – 1)) +

A(I) – ma(0) * A(i – Ma_Lags(0)) − …−

ma(q – 1) * A(i – Ma_Lags(q – 1))

where the constant is related to the mean of the series,

as follows:

and where

X(t) = W(t), t = 0, 1, …, n − 1

and

W(t) = W_Init(t + p), t = –p, –p + 1, …, −2,−1

φ θ θ() ()B W B A t Zt t= + ∈0

φ φ φ φ

θ θ θ θ

B B B B

B B B B

p
p

q
q

� �
� �

= − − − −

= − − − −

1

1

1 2
2

1 2
2

K

K

θ
µ

µ φ0
1

0

1 0
=

=

− ∑ >

�

�
�� =

p

pi
p

i� �

W

Const ar ar= ⋅ − − − −W ()1 0 q 1� � � �K

230 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

and A is either Input_Noise (if Input_Noise is used) or Output_Noise (other-
wise).

Example 1

In this example, RANDOM_ARMA is used to generate a time series of length
five, using an ARMA model with three autoregressive parameters and two mov-
ing average parameters. The start values are 0.1000, 0.0500, and 0.0375.

RANDOMOPT, set = 123457

n = 5

nparams = [3, 2]

ar = [0.5, 0.25, 0.125]

ma = [-0.5, -0.25]

r = RANDOM_ARMA(n, nparams, ar, ma)

PM, r, Format = "(5F10.3)",$

 Title = " ARMA random deviates"

 ARMA random deviates

 0.637 0.317 -0.366 -2.122 -1.407

Example 2

In this example, a time series of length 5 is generated using an ARMA model
with 4 autoregressive parameters and 2 moving average parameters. The start
values are 0.1, 0.05 and 0.0375.

RANDOMOPT, set = 123457

n = 5

nparams = [3, 2]

ar = [0.5, 0.25, 0.125]

ma = [-0.5, -0.25]

wi = [0.1, 0.05, 0.0375]

theta0 = 1

avar = 0.1

r = RANDOM_ARMA(n, nparams, ar, ma, /Accept_Reject, $

 W_Init = wi, Const = theta0, $

 Var_Noise = avar)

PM, r, Format = "(5F10.3)", $

FAURE_INIT Function 231

 Title = " ARMA random deviates:"

 ARMA random deviates:

 1.467 1.788 2.459 3.330 3.941

Warning Errors

STAT_RNARM_NEG_VAR — VAR(a) = “Var_Noise” = #, VAR(a) must be
greater than 0. The absolute value of # is used for VAR(a).

FAURE_INIT Function
Initializes the structure used for computing a shuffled Faure sequence.

Usage

result = FAURE_INIT(ndim)

Input Parameters

ndim  The dimension of the hyper-rectangle.

Returned Value

A structure that contains information about the sequence.

Input Keywords

Base  The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

Skip  The number of points to be skipped at the beginning of the Faure
sequence. Default:

where

/ 2 1m
base

−  

log /logB basem =   

232 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

and B is the largest representable integer.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the
keyword Base defaults to the smallest prime greater than or equal to the
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

[]1,..., 0,1 , 1,
d

nx x d∈ ≥

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

))
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × × 

();E n

Dn
d

c d
n d

n
� � � � � �

�
log

FAURE_INIT Function 233

Write the positive integer n in its b-ary expansion,

where ai (n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

n a n bi
i

i

=

=

�

Ê ()
0

0 � <a n bi � �

x c a n b j dn
j

kd
j

dk
d

k() () () ,= � �

=

�

=

�

- -ÊÊ
00

1 1

ck d
j()

()j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
k d = -

�

>

�

�
��

!

! !� �
0

234 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

 0.333689 0.492659 0.0640654

 0.667022 0.825992 0.397399

 0.778133 0.270436 0.175177

 0.111467 0.603770 0.508510

 0.444800 0.937103 0.841843

FAURE_NEXT_PT Function
Computes a shuffled Faure sequence.

Usage

result = FAURE_NEXT_PT(npts, state)

Input Parameters

npts  The number of points to generate in the hyper-rectangle.

state  State structure created by a call to FAURE_INIT.

Returned Value

An array of size npts by state.dim containing the npts next points in the shuffled
Faure sequence.

FAURE_NEXT_PT Function 235

Input Keywords

Double  If present and nonzero, double precision is used.

Output Keywords

Skip  The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for Skip, and using the same dimen-
sion for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

for all n>1.

[]1,..., 0,1 , 1,
d

nx x d∈ ≥

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

))
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × × 

();E n

Dn
d

c d
n d

n
� � � � � �

�
log

236 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the
keyword Base defaults to the smallest prime greater than or equal to the
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion

where ai(n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

n a n bi
i

i

=

=

�

Ê ()
0

0 � <a n bi � �

x c a n b j dn
j

kd
j

dk
d

k() () () ,= � �

=

�

=

�

- -ÊÊ
00

1 1

() ,jc
k d

()j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
k d = -

�

>

�

�
��

!

! !� �
0

FAURE_NEXT_PT Function 237

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

 0.333689 0.492659 0.0640654

 0.667022 0.825992 0.397399

 0.778133 0.270436 0.175177

 0.111467 0.603770 0.508510

 0.444800 0.937103 0.841843

238 Chapter 2: New Commands PV-WAVE 7.5 New Features Guide

239

CHAPTER

3

Updates to Existing Functionality
This chapter discusses the following topics:

• Updated PV-WAVE Functions and Procedures — Descriptions of new key-
words and parameters that have been added to PV-WAVE functions and
procedures. (page 239)

• Updated PV-WAVE:IMSL Statistics Functions and Procedures —
Description of new functionality that has been added to PV-WAVE:IMSL Sta-
tistics functions and procedures. (page 241)

• Updated PV-WAVE:IMSL Mathematics Functions and Procedures —
Description of new functionality that has been added to PV-WAVE:IMSL
Mathematics functions and procedures. (page 242)

Updated PV-WAVE Functions and Procedures
This section describes new keywords and parameters that have been added to
PV-WAVE functions and procedures.

JOURNAL Procedure

Keywords

Nobuffer — If present and nonzero, output lines should be written immediately to
the journal file without the normal file buffering.

240 Chapter 3: Updates to Existing Functionality PV-WAVE 7.5 New Features Guide

NoBlock Keyword for PV-WAVE VDA Tool Procedures
A new keyword, NoBlock, has been added for all standard VDA tool procedures
(see the PV-WAVE Reference).

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking
loop by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

YLabelCenter Keyword
Used With Routines: AXIS, BAR, BAR2D, BAR3D, CONTOUR,
CONTOUR2, OPLOT, PLOT, PLOT_FIELD, SURFACE

Corresponding System Variable: None.

Controls whether the top and bottom major tick labels on a Y axis will be
positioned within the boundaries of the axis box or centered across from the
corresponding major tick.

If this keyword is set, the top and bottom Y axis major tick labels will be centered
vertically with corresponding major ticks. If this keyword is not set, the default
behavior is to position the top and bottom Y axis major tick labels within the
boundaries of the axis box.

!Version System Variable
The !Version system variable now has a field called Revision. !Version.Revision
will either be a null string for major PV-WAVE releases, e.g. 7.00, 7.01, 7.10, or a
letter denoting the patch revision level, e.g. ’a’, ’b’, etc. Printing the complete ver-
sion number for PV-WAVE is now:

PRINT, !Version.release + !Version.revision

RANDOM Function 241

Updated PV-WAVE:IMSL Statistics Functions
This section describes new features that has been added to PV-WAVE:IMSL Sta-
tistics functions. For details, see the PV-WAVE: IMSL Statistics Reference.

RANDOM Function
Added several new distributions, including multinomial and stable. Also added
support for random permutations and samples.

RANDOMOPT Function
Added support for generating substream seeds, and support for a Generalized Feed-
back Shift Register (GFSR) generator.

242 Chapter 3: Updates to Existing Functionality PV-WAVE 7.5 New Features Guide

Updated PV-WAVE:IMSL Mathematics Functions
This section describes new features that have been added to PV-WAVE:IMSL
Mathematics functions. For details, see the PV-WAVE: IMSL Mathematics
Reference

RANDOM Function
Added several new distributions, including multinomial and stable. Also added
support for random permutations and samples.

RANDOMOPT Function
Added support for generating substream seeds, and support for a Generalized Feed-
back Shift Register (GFSR) generator.

Index 1

Index

A
AFFINE function 5
array

shift along one dimension 43
subset 44

arrays
compute logical AND 24
expanding into higher dimensions 14
extrema 17
homogeneous region, counting 7
homogeneous region, isolating 6
OR together 25
resample to new dimensions 40
sorting contents of 46
transformation 5

B
binomial distributions 210, 212, 213, 216,

221, 225
BLOB function 6
BLOBCOUNT function 7
bond functions

accrued interest maturity 131
accrued interest period 133
bond equivalent yield 135
convexity 137
coupon date 163, 165
coupon days 139
coupon days - next 145
coupon numbers 141
depreciation accounting period 147, 148
discount price 150
discount rate 152
discount yield 154
duration 157
interest rate security 159
Macauley duration 161
maturity received 172
price maturity 170

price periodic 167
settlement db 143
tbill price 174
tbill yield 175
year fraction 176
yield maturity 178
yield periodic 180

boundary 8
BOUNDARY function 8

C
Cartesian product 9
compare 41
converted 66
correlation matrix 212, 216
CPROD function 9
CURVATURES function 10

D
DERIVN function 11
DICOM 12
differentiation 11
dimensions of array, expanding 14
distribution functions

binomial probability 200
divisor 19

E
EUCLIDEAN function 13
expand an array 14
EXPAND function 14
EXPON function 16
exponentiation 16
EXTREMA function 17

F
factor 18
FACTOR function 18
Faure 185, 188, 233, 237

2 PV-WAVE 7.5 New Features Guide

Faure sequence 184, 187, 232, 235
faure_next_point 187, 235

financial functions
cumulative interest 97
cumulative principal 99
declining balance depreciation 100
depreciation

double-declining balance 102
straight-line 104
sum-of-years 105
variable declining balance 106

dollar decimal 108
dollar fraction 109
effective rate 110
future value 111
future value schedule 113
interest payment 114
interest rate annuity 115
internal rate of return 117
internal rate of return schedule 118
modified internal rate of return 120
net present value 121
nominal rate 123
number of periods 124
payment 125
present value 127
present value schedule 128
principal payment 130

floor 20

G
GCD function 19
general discrete distribution 95, 200, 209,

210, 213, 218, 219, 221, 225, 226
Gray code 186, 190, 234, 238
GREAT_INT function 20
greatest integer 20
grid 21
GRIDN function 21

H
HISTN function 22
histogram 22
hyper-rectangle 95

I
images

24-bit, rendering 38
INDEX_AND function 24
INDEX_OR function 25
integration 95
INTERPOLATE function 26
interpolation 27

scattered data 26
INTRP function 27

J
JACOBIAN function 28

K
Kalman filtering 190

L
LCM function 29
least integer 45
Lebesque measure 185, 188, 233, 236
list

returning 30
LISTARR function 30
low-discrepancy 186, 189, 234, 238

M
mathematical function

boundary 8
common divisor 19
compare 41
exponentiation 16
greatest integer 20
histogram 22
least common multiple 29
least integer 45
minimize 31
moments 33
multiply 37
neighbors 34
prime factorization 18
primes 36
resample array 40
sign of passed values 42
subset an array 44
vector, replicate 39

mathematics. See PV-WAVE:IMSL
Mathematics

maximum likelihood estimates 197

Index 3

minimize 31
MINIMIZE function 31
MOLEC function 32
molecular model 32
MOMENT function 33
moments 33
multiple 29
multiply 37
multivariate distribution 216

N
neighbors 34
NEIGHBORS function 34
NORMALS function 35

P
PRIME function 36
prime numbers 36
printing

Windows 90
product 37
PRODUCT function 37
pseudorandom numbers 205, 216, 218, 219,

221, 225, 226
pseudorandom order statistics 209
pseudorandom orthogonal matrix 212
pseudorandom sample 213
PV-WAVE

Database Connection
new routines 91

PV-WAVE:IMSL Mathematics
basic statistics 184
new functions 95
quadrature 95
special functions 97
updated functions 242

PV-WAVE:IMSL Statistics
new routines 190
probability distribution functions and

inverses 200
regression 201
time series and forecasting 190
updated functions 241

Q
quasi-Monte Carlo 95

R
RENDER24 function 38
REPLV function 39
RESAMP function 40

S
SAME function 41
SGN function 42
SHIF function 43
sign of passed values 42
SLICE function 44
SMALL_INT function 45
sorting

array contents 46
SORTN function 46
state vector 191
statespace model 190
statistics. See PV-WAVE:IMSL Statistics

T
tick marks

centering Y label 240
transformation

affine 5
24-bit image data

rendering 38

V
vector

replicate 39
vtkADDATTRIBUTE Procedure 47
vtkAXES Procedure 48
vtkCAMERA Procedure 50
vtkCLOSE Procedure 51
vtkCOLORBAR Procedure 52
vtkCOMMAND Procedure 53
vtkERASE Procedure 54
vtkGRID Procedure 55
vtkHEDGEHOG Procedure 56
vtkINIT Procedure 58
vtkLIGHT Procedure 59
vtkPLOTS Procedure 60
vtkPOLYDATA Procedure 62
vtkPOLYSHADE Procedure 63
vtkPPMREAD Function 65
vtkPPMWRITE Procedure 66
vtkRECTILINEARGRID Procedure 67

vtkRENDERWINDOW Procedure 68
vtkSCATTER Procedure 70
vtkSLICEVOL Procedure 72
vtkSTRUCTUREDGRID Procedure 74
vtkSTRUCTUREDPOINTS Procedure 75
vtkSURFACE Procedure 76
vtkSURFGEN Procedure 79
vtkTEXT Procedure 81
vtkTVRD Function 82
vtkUNSTRUCTUREDGRID Procedure 83
vtkWDELETE Procedure 84
vtkWINDOW Procedure 85
vtkWRITEVRML Procedure 87
vtkWSET Procedure 88

W
WgOrbit procedure 89
WIN32_PICK_PRINTER function 90
Windows

printer dialog 90

Index 5

	PV-WAVE New Features Guide
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - New Features Introduction
	PV-WAVE 7.5 Major Enhancements
	PV�WAVE VTK Integration
	PV�WAVE: IMSL Mathematics and Statistics
	PV�WAVE: Database Connection
	PV�WAVE: DICOM Reader

	2 - New Commands
	New PV�WAVE Commands
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example 1
	Example 2
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	Usage
	Input Parameters
	Returned Value
	Keyword
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Keywords
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Keywords
	Example
	Usage
	Input Parameters
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Examples
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	New PV-WAVE:Database Connection Functions
	DB_GET_BINARY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion

	NULL_PROCESSOR Function
	Usage
	Input Parameters
	Keywords
	Discussion

	New PV�WAVE:IMSL Mathematics Commands
	Chapter 4: Quadrature
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Discussion
	Example

	Chapter 9: Special Functions
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example

	Chapter 10: Basic Statistics and Random Number Generation
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Discussion
	Example

	New PV�WAVE:IMSL Statistics Commands
	Chapter 8: Time Series and Forecasting
	Usage
	Input/Output Parameters
	Input Keywords
	Output Keywords
	Discussion
	Example 1

	Chapter 11: Probability Distribution Functions and Inverses
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example

	Chapter 12: Random Number Generation
	Usage
	Input/Output Parameters
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Input Keywords
	Returned Value
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Input/Output Keywords
	Discussion
	Example 1
	Example 2
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Input/Output Parameters
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters

	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters

	Input/Out Parameters
	Returned Value
	Input Keywords
	Discussion
	Example 1
	Example 2
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example 1
	Example 2
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Discussion
	Example 1
	Example 2
	Warning Errors
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Discussion
	Example

	3 - Updates to Existing Functionality
	Updated PV-WAVE Functions and Procedures
	JOURNAL Procedure
	Keywords

	NoBlock Keyword for PV�WAVE VDA Tool Procedures
	Keywords

	YLabelCenter Keyword
	!Version System Variable

	Updated PV-WAVE:IMSL Statistics Functions
	RANDOM Function
	RANDOMOPT Function

	Updated PV-WAVE:IMSL Mathematics Functions
	RANDOM Function
	RANDOMOPT Function

	Index

